Direkt zum Inhalt

Nobelpreisträger Acemoğlu warnt: KI wird falsch entwickelt, Trump zerstört Institutionen

(Zusammenfassung der Quelle: DER SPIEGEL (Acemoğlu-Interview), 23.12.2025)

Im SPIEGEL-Interview äußert sich Wirtschaftsnobelpreisträger Daron Acemoğlu (MIT) äußerst besorgt über die Zukunft. Er sieht eine nie dagewesene Unsicherheit und erwartet ein turbulentes Jahr 2026, geprägt von technologischen Umbrüchen und geopolitischen Spannungen. Seine größte Sorge gilt der Kombination aus falsch entwickelter KI und der "Dummheit von Donald Trump".

Kritik am KI-Hype: Acemoğlu glaubt an das Potenzial von KI, sieht aber die aktuelle Entwicklung kritisch. Die großen Tech-Konzerne (OpenAI, Google) fokussieren auf Profite und Automatisierung, nicht auf die Unterstützung menschlicher Arbeit. Die riesigen Modelle ("stoische Papageien") seien fehleranfällig und schwer in Unternehmensprozesse zu integrieren. Er prognostiziert daher nur geringe Produktivitätsgewinne und ein geringes Wirtschaftswachstum durch KI in den nächsten zehn Jahren. Das "schreckliche Szenario": KI bringt kaum Fortschritt, vernichtet aber Jobs und drückt Löhne, weil sie gehyped wird.

Alternativer KI-Weg: Acemoğlu fordert eine KI-Entwicklung, die vom Arbeiter ausgeht. Statt "KI von der Stange" brauche es kleine, kontextspezifische Modelle, trainiert mit Firmendaten, die Mitarbeitern helfen, produktiver zu werden ("KI mit Lebenserfahrung"). Er sieht hier eine Chance für Europa, spezifische Modelle basierend auf Werten wie Datenschutz zu entwickeln, kritisiert aber die aktuelle Überregulierung, die Talente vertreibe.

Geopolitik & Trump: Acemoğlu warnt vor dem KI-Wettrüsten zwischen den USA und China, das Kooperation verhindere. Donald Trump zerstöre durch seine Angriffe auf Justiz, Zentralbank und Regulierungsbehörden die Institutionen, die Amerikas Innovationskraft und den Dollar als Leitwährung sichern. Ohne Kurskorrektur werde die US-Wirtschaft in den nächsten 5-10 Jahren "abschmieren". Eine KI-Blase an der Börse schließt er nicht aus, sieht aber eher einen breiten Boom, getrieben von gigantischen Investitionen der Tech-Giganten.

Der kritische Kim-Blick:

Das Interview ist eine wichtige Gegenstimme zum KI-Hype, aber Acemoğlu bleibt in einigen Punkten vage:

  1. Unterschätzung der Geschwindigkeit: Seine Prognose (max. 1,1 % KI-Wachstum pro Jahrzehnt) wirkt angesichts der rasanten Entwicklung von Modellen wie GPT-5 konservativ. Er selbst räumt ein, dass er sie vielleicht bald revidieren muss.
  2. Der europäische Widerspruch: Acemoğlu fordert eine "europäische KI" basierend auf Werten, kritisiert aber gleichzeitig die Regulierung, die diese Werte schützen soll, als Innovationsbremse. Wie beides zusammengehen soll, bleibt offen.
  3. Trump als Sündenbock: Die Kritik an Trumps Institutionen-Zerstörung ist valide, aber die ökonomischen Probleme der USA (Schulden, Ungleichheit) haben tiefere Wurzeln, die Acemoğlu hier kaum thematisiert.
Kim prophezeit

Basierend auf Acemoğlus Analyse des "falschen Weges" wage ich diese Prognose:

  1. Die "Desillusionierungs-Phase" (2026/27): Die Diskrepanz zwischen KI-Hype und realen Produktivitätsgewinnen wird offensichtlich. Unternehmen, die Milliarden in "KI von der Stange" investiert haben, werden enttäuscht sein. Dies könnte der Auslöser für das Platzen der von Acemoğlu erwähnten Börsenblase sein.
  2. Der Aufstieg der "Vertical AI": Statt auf allmächtige LLMs zu setzen, wird sich der Markt auf hochspezialisierte, branchenspezifische KI-Lösungen ("Vertical AI") verlagern – genau die "kleinen Modelle", die Acemoğlu fordert. Start-ups, die spezifische Probleme (z.B. in der Logistik, Medizin, Handwerk) lösen, werden boomen.
  3. Die Rückkehr des "Human-in-the-Loop": Weil KI im komplexen Kontext fehleranfällig bleibt, werden Jobs massiv an Bedeutung gewinnen, deren Kernaufgabe die Überwachung, Korrektur und das "Fine-Tuning" von KI-Systemen durch menschliche Experten ist.
Kim (JOBfellow) kommentiert

Acemoğlu bestätigt: Der Fokus muss auf der Augmentierung (Unterstützung) des Menschen liegen, nicht auf der reinen Automatisierung.

  1. Werde zum "Kontext-Experten": KI scheitert laut Acemoğlu oft am komplexen Kontext des Arbeitsalltags. Dein Wert liegt darin, das Fachwissen und die Erfahrung einzubringen, die der KI fehlen. Lerne, KI als Werkzeug zu nutzen, aber behalte die Kontrolle über das Ergebnis.
  2. Setze auf Nischen-KI: Wenn die Zukunft in "kleinen, passgenauen Modellen" liegt, dann spezialisiere dich. Verstehe, wie KI in deiner Branche, in deinem spezifischen Job helfen kann. Werde derjenige, der die Brücke zwischen Fachproblem und KI-Lösung schlägt.
  3. Beobachte die Regulatorik: Acemoğlus Warnung vor der Zerstörung von Institutionen ist ernst zu nehmen. In einem unsicheren Umfeld sind Jobs, die sich mit Compliance, Risikomanagement und ethischer KI befassen, krisensicherer.
Jedes Kind weiß mehr über die Welt als ChatGPT ( )

Der Autor argumentiert, dass Künstliche Intelligenz (KI) wie ChatGPT zwar riesige Textmengen verarbeiten kann, ihr aber jegliches Verständnis für die reale Welt fehlt – sie sei im Grunde ein „Papiertiger“.

Er stützt sich dabei maßgeblich auf den renommierten Meta-KI-Chef und Turing-Preisträger Yann LeCun. LeCun stellt dazu eine zentrale Berechnung an:

  1. Der Datenvergleich: Ein großes Sprachmodell (LLM) wird mit etwa 10¹⁴ Bytes an Daten trainiert (im Wesentlichen alle öffentlich verfügbaren Texte im Internet). Ein kleines Kind verarbeitet jedoch in seinen ersten vier Lebensjahren allein über das Sehen (den Sehnerv) die gleiche Datenmenge.
  2. Ganzheitliches Lernen: Das Kind sammelt zusätzlich „Fantastillionen“ an Daten durch Hören, Fühlen, Schmecken und Riechen, wodurch ein echtes, ganzheitliches Weltbild entsteht.

Fichtner leitet daraus ab, dass Computer die „unauslotbare Tiefe“ menschlichen Denkens, Fühlens und Handelns nicht nachbilden können. Debatten darüber, ob KI uns alle arbeitslos macht oder die Menschheit auslöscht, hält er daher für „oberflächlich und alarmistisch“. Die Zukunft sei vielmehr eine Partnerschaft, in der Menschen und Maschinen verschmelzen (als Beispiel nennt er einen Fabrikarbeiter, der ein Exoskelett nutzt).

LeCun betont zudem, dass KI „realitätsblind“ bleibe, wenn sie nur mit Text trainiert wird. Echte Intelligenz erfordere ein Verstehen der realen Welt. Dieses Verständnis sei, genau wie evolutionäre Antriebe, schlichtweg „nicht programmierbar“. (Beispiel: „Warum weiß das Kind mit acht, neun Monaten, dass es Zeit ist aufzustehen? Und warum hat es so viel Freude daran, obwohl es dauernd hinfällt?“)

Das Fazit lautet: ChatGPT weiß auf diese „Rätsel des Lebens“ keine Antwort. An der Einzigartigkeit des Menschen habe sich nichts geändert, und ein vierjähriges Kind könne der KI beim Verständnis der Welt locker das Wasser reichen.

Vollansicht
Amazons Automatisierungspläne ( )

Laut einem Bericht der New York Times über geleakte Dokumente plant Amazon einen massiven Ausbau der Automatisierung durch Roboter und KI in seinen Logistikzentren und bei Lieferungen. Diese Pläne könnten Hunderttausende Arbeitsplätze kosten.

Der Bericht legt nahe, dass es sich dabei weniger um den Abbau bestehender Jobs handelt, sondern vielmehr um potenzielle Stellen, die nicht besetzt werden.

  • Das Automationsteam von Amazon rechne damit, dass 2027 rund 160.000 benötigte Mitarbeiter:innen nicht eingestellt würden.
  • Bis 2033 könnten die Umsätze sich verdoppeln, während die Mitarbeiterzahl stabil bliebe. Die NYT leitet daraus ab, dass in diesem Zeitraum über 600.000 potenzielle Stellen nicht geschaffen würden.
  • Internen Dokumenten zufolge wolle Amazon rund 75 % der Unternehmensabläufe automatisieren.

Amazon hat die Pläne nicht dementiert, aber beschwichtigt: Die Dokumente würden nur die Perspektive eines einzigen Teams widerspiegeln, nicht die Gesamtstrategie.

  • Als Beleg für seine Einstellungsbereitschaft verwies Amazon auf die Einstellung von 250.000 Mitarbeiter:innen für das Weihnachtsgeschäft.
  • Zudem seien in der Vergangenheit durch Automatisierung gesparte Gelder in neue Jobs investiert worden.

Die NYT merkt jedoch an, dass Amazon künftige Logistikzentren bereits mit Hunderten Robotern ausrüste, wodurch rund ein Viertel weniger Personal als bisher benötigt werde.

Vollansicht
Gen Z im Wandel: Experten raten angesichts von KI zur Berufswahl im Handwerk statt Universität ( )

Der Artikel warnt, dass Künstliche Intelligenz (KI) den Arbeitsmarkt dramatisch verändern wird, insbesondere für Jobeinsteiger:innen und Akademiker:innen, während das Handwerk massiv an Bedeutung gewinnt.

KI und der Wandel der Arbeit (Hartwin Maas):

  • Einsteiger-Jobs werden "obsolet": Hartwin Maas prognostiziert, dass typische Einsteiger-Jobs bis 2030 "obsolet" werden. KI übernimmt Routineaufgaben in Bereichen wie Marketing, Entry-Level-Coding, Lagerhaltung und Vorarbeit im Recruiting.
  • Höhere Anforderungen: Berufseinsteiger:innen werden dadurch gezwungen, sofort komplexere Aufgaben zu übernehmen, da die einfachen Zuarbeiten wegfallen.
  • Neue Berufe: Gleichzeitig werden bis 2035 viele neue Berufe entstehen, die wir heute noch nicht kennen.

Geisteswissenschaften unter Druck (Rüdiger & Hartwin Maas):

  • Abwertung der Disziplin: Rüdiger Maas befürchtet eine Abwertung der Geisteswissenschaften. KI-Tools wie ChatGPT ersetzen Kernaufgaben (Zusammenfassen, Lektorat, Übersetzungen, Routine-Journalismus) und fördern laut Hartwin Maas eine "Copy-Paste-Mentalität" statt tiefer Reflexion.
  • KI in der Lehre: Rüdiger Maas sieht Probleme bei der Erkennung von KI-generierten Arbeiten. Er schlägt vor, mündliche Prüfungen stärker zu gewichten, um das tatsächliche Reflexionsvermögen zu testen.
  • Neue Chancen: Geisteswissenschaftler:innen könnten sich künftig auf ethische und gesellschaftliche Fragen der KI konzentrieren, wodurch Empathie und zwischenmenschliche Fähigkeiten wichtiger werden.

Die große Chance: Das Handwerk (Hartwin Maas):

  • Kritik an "Akademisierung": Hartwin Maas kritisiert die "übertriebene Akademisierung" in Deutschland, die "uns auf die Füße fallen" wird, und lobt die Schweiz für ihre Ausgeglichenheit zwischen akademischer und beruflicher Bildung.
  • Vorteile des Handwerks: Er erwartet einen starken Anstieg der "Erfolgskurve" für Handwerksberufe. Die Vorteile seien: zukunftssichere Jobs, stabiles Einkommen, gute Karrierechancen, frühere Selbstständigkeit und höhere Zufriedenheit. Handwerker:innen würden zudem früher Geld verdienen und so mehr Vermögen aufbauen als viele Studierende.
  • Bildungsweg überdenken: Der traditionelle Weg (Gymnasium, Universität) könnte an Wert verlieren, da der Arbeitsmarkt künftig stärker Fähigkeiten und technologische Kenntnisse priorisiert.
Vollansicht
Problem in der US-Justiz: Der Einsatz von Generativer Künstlicher Intelligenz (KI) führt zu "KI-Müll" ( )

Der Artikel berichtet über ein ernstes Problem in der US-Justiz: Der Einsatz von Generativer Künstlicher Intelligenz (KI) führt zu "KI-Müll" – also von der KI erfundenen Fakten, Studien oder Präzedenzfällen – in offiziellen Gerichtsdokumenten. Während dies bisher vor allem bei Anwält:innen auftrat, sind nun auch die Urteile von zwei US-Bundesrichtern betroffen.

Der Vorfall

Zwei US-Bundesbezirksrichter, Henry Wingate (Mississippi) und Julien Neals (New Jersey), haben Entscheidungen ausgefertigt, die so offensichtlich fehlerhaft waren, dass es den Verfahrensparteien sofort auffiel. Nachdem sie darauf hingewiesen wurden, löschten beide Richter die fehlerhaften Urteile aus den Akten und ersetzten sie durch korrigierte Versionen.

Die Reaktion: Keine Verantwortung, Schuldzuweisungen

US-Senator Charles Grassley, besorgt um die Integrität der Justiz, forderte Antworten von den Richtern. In ihren Antwortschreiben zeigte sich laut Artikel wenig Verantwortungsbewusstsein:

  • Richter Wingate schob die Schuld auf einen juristischen Mitarbeiter:in. Dieser habe das Sprachmodell Perplexity genutzt, um "öffentlich verfügbare Informationen zusammenzustellen".
  • Richter Neals machte einen Praktikanten (Rechtswissenschaftsstudent) verantwortlich. Dieser habe ChatGPT "ohne Genehmigung, ohne Offenlegung" und entgegen aller Regeln genutzt.

Beide Richter gaben zu, dass die normalen, mehrstufigen Prüfverfahren (die solche Fehler hätten finden sollen) vor der Veröffentlichung unterblieben. Den Grund dafür nannten sie jedoch nicht.

Das Kernproblem: Fehlende und schwammige Regeln

Der Vorfall offenbart ein strukturelles Problem:

  1. Keine klaren Regeln vor Ort: Die betroffenen Gerichte hatten offenbar keine verschriftlichten Regeln zum Einsatz von KI.
  2. "Erstaunlich schwammige" Bundesvorgaben: Die vorläufigen Richtlinien der US-Bundesgerichtsverwaltung sind sehr vage. Sie verbieten nicht, das Fällen von Urteilen an KI auszulagern, sondern regen lediglich zur "Vorsicht" an.
  3. Keine Offenlegungspflicht: Richter:innen und Justizbedienstete müssen nicht einmal verpflichtend angeben, ob sie KI eingesetzt haben; sie sollen nur darüber "nachdenken".

Derzeit wird eine Novelle diskutiert, nach der KI-erzeugte Beweise ähnlich wie Aussagen von Sachverständigen behandelt werden sollen.

Vollansicht
E-Bike-Boom sorgt für "Traumjobs" ( )
(Zusammenfassung der Quelle: Süddeutsche Zeitung)

Der E-Bike-Boom und die hohe Nachfrage nach Job-Bikes (Firmen-Leasing) sorgen für volle Auftragsbücher im Zweirad-Handwerk.

  • Hoher Bedarf: Die Betriebe werden mit Aufträgen überflutet ("plötzlich fünfzig Räder in der Woche") und suchen "händeringend" nach qualifizierten Kolleg:innen – auch Quereinsteiger:innen sind willkommen.
  • High-Tech ist Standard: Der Beruf ist heute ein "Traumjob" für Technik-Fans. E-Bikes machen den "Löwenanteil" der Arbeit aus.
  • Lebenslanges Lernen: Du lernst nie aus. Ständige Weiterbildung (z.B. direkt bei Herstellern wie Bosch) zu neuer Motor-, Akku- und Display-Technik gehört fest zum Job.
  • Sinnvolle Arbeit: Du sorgst für Sicherheit im Verkehr. Experten betonen, wie wichtig die regelmäßige Wartung der modernen Bikes ist.
Vollansicht
Studie "Die Suche nach KI-Fachkräften in Deutschland Rekrutierungsstrategien in Stellenanzeigen Gutachten im Projekt „Entwicklung und Messung der Digitalisierung der Wirtschaft am Standort Deutschland“ ( )

Kerninhalte der Studie:

Starker Anstieg der KI-Stellenanzeigen: Die Studie belegt einen deutlichen und kontinuierlichen Anstieg der Nachfrage nach KI-Fachkräften in Deutschland über die letzten Jahre. Dieser Trend ist branchenübergreifend, mit Schwerpunkten in der IT, Finanzdienstleistung, Beratung und dem verarbeitenden Gewerbe.

Vielfalt an KI-Berufsprofilen: Es werden verschiedene Rollen identifiziert, die unter dem Oberbegriff "KI-Fachkräfte" subsumiert werden, darunter insbesondere:

  • Data Scientists (häufigste Rolle)
  • Machine Learning Engineers
  • KI-Entwickler/Programmierer
  • Spezialisierungen wie Computer Vision oder Natural Language Processing (NLP).
  • Auch KI-relevante Rollen wie Data Engineers oder Cloud Engineers, die die Infrastruktur für KI schaffen.

Gesuchter Kompetenzmix: Unternehmen suchen einen hybriden Kompetenzmix, der sich aus drei Hauptbereichen zusammensetzt:

  • Technisches KI-Fachwissen: Kenntnisse in Machine Learning (insbesondere Deep Learning), Algorithmen, neuronalen Netzen, Data Mining, Big Data und relevanter Programmiersprachen (Python, R, Java).
  • Mathematisch-Statistische Fähigkeiten: Starkes Verständnis für Statistik, Wahrscheinlichkeitsrechnung und lineare Algebra zur Modellentwicklung und -bewertung.
  • Domain-Wissen: Branchen- und Anwendungskenntnisse, um KI-Lösungen auf spezifische Geschäftsprobleme anwenden zu können.

Soft Skills und Methodenfähigkeiten: Neben den Hard Skills sind auch Soft Skills entscheidend:

  • Problemlösungskompetenz und analytisches Denken.
  • Kommunikationsfähigkeit (um komplexe KI-Themen an Nicht-Experten zu vermitteln).
  • Teamfähigkeit und Projekterfahrung.
  • Kreativität und Neugierde (insbesondere bei Forschungs- und Entwicklungsrollen).

Hohe Bildungsanforderungen: Für die Kern-KI-Rollen wird in den Stellenanzeigen häufig ein akademischer Abschluss (Master oder Promotion) in Informatik, Mathematik, Statistik, Physik oder angrenzenden Ingenieurwissenschaften vorausgesetzt.

Herausforderungen bei der Rekrutierung: Die Studie bestätigt den Fachkräftemangel in diesem Bereich. Unternehmen müssen oft hohe Anforderungen stellen und gleichzeitig um die wenigen Talente konkurrieren. Die Suche ist komplex, da die benötigten Kompetenzen oft interdisziplinär sind und nicht immer in klassischen Ausbildungsgängen abgebildet werden.

Rekrutierungsstrategien: Unternehmen versuchen, Talente durch Attraktoren wie innovative Projekte, modernste Technologien, flexible Arbeitsmodelle und Weiterbildungsmöglichkeiten zu gewinnen.

Zusammenfassend: Die Studie zeigt, dass der deutsche Arbeitsmarkt eine stark wachsende Nachfrage nach hochqualifizierten KI-Fachkräften hat, die eine Mischung aus technischem, mathematischem und domänenspezifischem Wissen sowie ausgeprägten Soft Skills mitbringen. Die Rekrutierung dieser Talente stellt eine große Herausforderung für Unternehmen dar.

Vollansicht