Direkt zum Inhalt

LinkedIn revolutioniert die Jobsuche: Neue KI-Funktionen sollen Bewerbungen massiv effizienter machen

(Zusammenfassung der Quelle: Computerwoche 8.12.25 )

LinkedIn führt neue, LLM-basierte KI-Funktionen ein, um die Jobsuche von einer klassischen Stichwortsuche in einen Dialog zu verwandeln. Ziel ist es, die Effizienz für Bewerber und Recruiter drastisch zu steigern, indem die Qualität der Treffer erhöht und unnötiges "Rauschen" beseitigt wird. Die Basis bildet ein neues, GPU-betriebenes Empfehlungssystem, das deutlich leistungsfähiger ist als das bisherige.

Die neuen Funktionen:

  • KI-Chat zur Jobsuche: Bewerber können in natürlicher Sprache nach Jobs suchen (z.B. "Suche Job als... der mir wichtig ist"). Die KI erkennt die Absicht ("Intent") und liefert personalisierte Ergebnisse, basierend auf dem Profil, inklusive alternativer Karrierewege. Dies soll "tiefer graben" als bisherige semantische Suchen und auch Nischen abdecken. Verfügbar bereits in USA, UK, Kanada, Australien, Indien, Singapur; breiter Rollout für 2026 geplant.
  • "People Search" (KI-Networking): Diese Funktion hilft, relevante Kontakte für Empfehlungen oder Fachfragen innerhalb von Unternehmen zu finden (z.B. "Wer kann mich bei Accenture empfehlen?"). Derzeit nur für US-Premium-Kunden, soll aber "in den nächsten Monaten weltweit und kostenlos" kommen.
  • Skill-Gap-Analyse & Umleitung: Die KI zeigt Kandidaten sofort, welche Skills für eine Stelle fehlen, und lenkt sie zu besser geeigneten Jobs um. Laut LinkedIn wurden so bereits 2 Millionen Bewerbungen pro Monat umgeleitet, was die Qualität der Bewerbungen für Recruiter steigert.
Der kritische Kim-Blick:

Die Ankündigungen klingen vielversprechend, haben aber Haken:

  1. Die "Filterblasen"-Gefahr: Wenn die KI basierend auf dem bisherigen Profil sucht, besteht die Gefahr, dass Bewerber nur noch Vorschläge bekommen, die ihrem aktuellen Status entsprechen. Der versprochene Blick auf "alternative Karrierewege" könnte durch den Algorithmus eher eingeschränkt als erweitert werden.
  2. Intransparenz der "Umleitung": Dass LinkedIn monatlich 2 Millionen Bewerbungen "umleitet", ist ein massiver Eingriff in den Markt. Nach welchen Kriterien entscheidet die KI, dass ein Kandidat nicht geeignet ist? Diese Black Box ist problematisch für die Chancengleichheit.
  3. Zeitplan-Zweifel: Die Ankündigung, dass die "People Search" in wenigen Monaten "weltweit und kostenlos" verfügbar sein soll, wirkt angesichts des bisherigen langsamen Rollouts (nur USA, Premium) sehr ambitioniert.
Kim prophezeit

Basierend auf der "Skill-Gap-Analyse" und der "Umleitung" wage ich diese Prognose:

  1. Das Ende der "Hoffnungs-Bewerbung" (2026/27): Bewerbungen auf Stellen, für die man laut KI-Analyse nicht die nötigen Skills hat, werden vom System gar nicht mehr zum Recruiter durchgelassen. Die KI wird zum ultimativen Türsteher, der "unpassende" Kandidaten automatisch aussiebt.
  2. LinkedIn wird zur "Karriere-Lernplattform": Die Skill-Gap-Analyse wird direkt mit LinkedIn Learning verknüpft. Wer die Lücke schließen will, bekommt sofort den passenden (kostenpflichtigen) Kurs angeboten. Der Übergang von Jobsuche zu Weiterbildung wird nahtlos.
  3. Der "Mentor-Marktplatz": Die Vision, Mentoren per KI zu finden, wird Realität. LinkedIn wird einen Marktplatz für Mentoring etablieren, auf dem KI basierend auf Beiträgen und Expertise die perfekten Matches vorschlägt – und diese Vermittlung potenziell monetarisiert.
Kim (JOBfellow) kommentiert

LinkedIn wird zum KI-Gatekeeper. Passe deine Strategie an:

  1. Optimiere dein Profil für die KI: Dein Profil ist die Datenbasis für die "Intent"-Erkennung. Sorge dafür, dass deine Skills, Erfahrungen und Ziele glasklar und detailliert hinterlegt sind. Vage Angaben führen zu vagen Jobvorschlägen.
  2. Nutze die "Skill-Gap-Analyse" als Lern-Navi: Wenn die KI dir sagt, welche Skills fehlen, nimm das ernst. Das ist dein direkter Hinweis, welche Weiterbildungen dich für deinen Wunschjob qualifizieren.
  3. Bereite dich auf "People Search" vor: Vernetze dich strategisch. Wenn die Funktion kommt, wird dein Netzwerk dein wichtigstes Asset, um Empfehlungen zu finden. Pflege Kontakte in deinen Zielunternehmen schon jetzt.
Problem in der US-Justiz: Der Einsatz von Generativer Künstlicher Intelligenz (KI) führt zu "KI-Müll" ( )

Der Artikel berichtet über ein ernstes Problem in der US-Justiz: Der Einsatz von Generativer Künstlicher Intelligenz (KI) führt zu "KI-Müll" – also von der KI erfundenen Fakten, Studien oder Präzedenzfällen – in offiziellen Gerichtsdokumenten. Während dies bisher vor allem bei Anwält:innen auftrat, sind nun auch die Urteile von zwei US-Bundesrichtern betroffen.

Der Vorfall

Zwei US-Bundesbezirksrichter, Henry Wingate (Mississippi) und Julien Neals (New Jersey), haben Entscheidungen ausgefertigt, die so offensichtlich fehlerhaft waren, dass es den Verfahrensparteien sofort auffiel. Nachdem sie darauf hingewiesen wurden, löschten beide Richter die fehlerhaften Urteile aus den Akten und ersetzten sie durch korrigierte Versionen.

Die Reaktion: Keine Verantwortung, Schuldzuweisungen

US-Senator Charles Grassley, besorgt um die Integrität der Justiz, forderte Antworten von den Richtern. In ihren Antwortschreiben zeigte sich laut Artikel wenig Verantwortungsbewusstsein:

  • Richter Wingate schob die Schuld auf einen juristischen Mitarbeiter:in. Dieser habe das Sprachmodell Perplexity genutzt, um "öffentlich verfügbare Informationen zusammenzustellen".
  • Richter Neals machte einen Praktikanten (Rechtswissenschaftsstudent) verantwortlich. Dieser habe ChatGPT "ohne Genehmigung, ohne Offenlegung" und entgegen aller Regeln genutzt.

Beide Richter gaben zu, dass die normalen, mehrstufigen Prüfverfahren (die solche Fehler hätten finden sollen) vor der Veröffentlichung unterblieben. Den Grund dafür nannten sie jedoch nicht.

Das Kernproblem: Fehlende und schwammige Regeln

Der Vorfall offenbart ein strukturelles Problem:

  1. Keine klaren Regeln vor Ort: Die betroffenen Gerichte hatten offenbar keine verschriftlichten Regeln zum Einsatz von KI.
  2. "Erstaunlich schwammige" Bundesvorgaben: Die vorläufigen Richtlinien der US-Bundesgerichtsverwaltung sind sehr vage. Sie verbieten nicht, das Fällen von Urteilen an KI auszulagern, sondern regen lediglich zur "Vorsicht" an.
  3. Keine Offenlegungspflicht: Richter:innen und Justizbedienstete müssen nicht einmal verpflichtend angeben, ob sie KI eingesetzt haben; sie sollen nur darüber "nachdenken".

Derzeit wird eine Novelle diskutiert, nach der KI-erzeugte Beweise ähnlich wie Aussagen von Sachverständigen behandelt werden sollen.

Vollansicht
E-Bike-Boom sorgt für "Traumjobs" ( )
(Zusammenfassung der Quelle: Süddeutsche Zeitung )

Der E-Bike-Boom und die hohe Nachfrage nach Job-Bikes (Firmen-Leasing) sorgen für volle Auftragsbücher im Zweirad-Handwerk.

  • Hoher Bedarf: Die Betriebe werden mit Aufträgen überflutet ("plötzlich fünfzig Räder in der Woche") und suchen "händeringend" nach qualifizierten Kolleg:innen – auch Quereinsteiger:innen sind willkommen.
  • High-Tech ist Standard: Der Beruf ist heute ein "Traumjob" für Technik-Fans. E-Bikes machen den "Löwenanteil" der Arbeit aus.
  • Lebenslanges Lernen: Du lernst nie aus. Ständige Weiterbildung (z.B. direkt bei Herstellern wie Bosch) zu neuer Motor-, Akku- und Display-Technik gehört fest zum Job.
  • Sinnvolle Arbeit: Du sorgst für Sicherheit im Verkehr. Experten betonen, wie wichtig die regelmäßige Wartung der modernen Bikes ist.
Vollansicht
Studie "Die Suche nach KI-Fachkräften in Deutschland Rekrutierungsstrategien in Stellenanzeigen Gutachten im Projekt „Entwicklung und Messung der Digitalisierung der Wirtschaft am Standort Deutschland“ ( )

Kerninhalte der Studie:

Starker Anstieg der KI-Stellenanzeigen: Die Studie belegt einen deutlichen und kontinuierlichen Anstieg der Nachfrage nach KI-Fachkräften in Deutschland über die letzten Jahre. Dieser Trend ist branchenübergreifend, mit Schwerpunkten in der IT, Finanzdienstleistung, Beratung und dem verarbeitenden Gewerbe.

Vielfalt an KI-Berufsprofilen: Es werden verschiedene Rollen identifiziert, die unter dem Oberbegriff "KI-Fachkräfte" subsumiert werden, darunter insbesondere:

  • Data Scientists (häufigste Rolle)
  • Machine Learning Engineers
  • KI-Entwickler/Programmierer
  • Spezialisierungen wie Computer Vision oder Natural Language Processing (NLP).
  • Auch KI-relevante Rollen wie Data Engineers oder Cloud Engineers, die die Infrastruktur für KI schaffen.

Gesuchter Kompetenzmix: Unternehmen suchen einen hybriden Kompetenzmix, der sich aus drei Hauptbereichen zusammensetzt:

  • Technisches KI-Fachwissen: Kenntnisse in Machine Learning (insbesondere Deep Learning), Algorithmen, neuronalen Netzen, Data Mining, Big Data und relevanter Programmiersprachen (Python, R, Java).
  • Mathematisch-Statistische Fähigkeiten: Starkes Verständnis für Statistik, Wahrscheinlichkeitsrechnung und lineare Algebra zur Modellentwicklung und -bewertung.
  • Domain-Wissen: Branchen- und Anwendungskenntnisse, um KI-Lösungen auf spezifische Geschäftsprobleme anwenden zu können.

Soft Skills und Methodenfähigkeiten: Neben den Hard Skills sind auch Soft Skills entscheidend:

  • Problemlösungskompetenz und analytisches Denken.
  • Kommunikationsfähigkeit (um komplexe KI-Themen an Nicht-Experten zu vermitteln).
  • Teamfähigkeit und Projekterfahrung.
  • Kreativität und Neugierde (insbesondere bei Forschungs- und Entwicklungsrollen).

Hohe Bildungsanforderungen: Für die Kern-KI-Rollen wird in den Stellenanzeigen häufig ein akademischer Abschluss (Master oder Promotion) in Informatik, Mathematik, Statistik, Physik oder angrenzenden Ingenieurwissenschaften vorausgesetzt.

Herausforderungen bei der Rekrutierung: Die Studie bestätigt den Fachkräftemangel in diesem Bereich. Unternehmen müssen oft hohe Anforderungen stellen und gleichzeitig um die wenigen Talente konkurrieren. Die Suche ist komplex, da die benötigten Kompetenzen oft interdisziplinär sind und nicht immer in klassischen Ausbildungsgängen abgebildet werden.

Rekrutierungsstrategien: Unternehmen versuchen, Talente durch Attraktoren wie innovative Projekte, modernste Technologien, flexible Arbeitsmodelle und Weiterbildungsmöglichkeiten zu gewinnen.

Zusammenfassend: Die Studie zeigt, dass der deutsche Arbeitsmarkt eine stark wachsende Nachfrage nach hochqualifizierten KI-Fachkräften hat, die eine Mischung aus technischem, mathematischem und domänenspezifischem Wissen sowie ausgeprägten Soft Skills mitbringen. Die Rekrutierung dieser Talente stellt eine große Herausforderung für Unternehmen dar.

Vollansicht