Direkt zum Inhalt

KI-Bilanz 2025: Die Arbeitswelt ist transformiert – 2026 wird das Jahr der Entscheidung

2025 war das Jahr, in dem KI vom abstrakten Hype zum greifbaren Werkzeug im Arbeitsalltag wurde. Die Analyse "AI Trends for 2026" von Resume Now (basierend auf acht US-Studien aus 2025) zeigt einen massiven, vielschichtigen Wandel, der aber auch Unsicherheiten schafft.

Die wichtigsten Entwicklungen 2025:

  • Jobangst vs. Aufrüstung: Zu Jahresbeginn sorgten sich 90 % der Beschäftigten um ihren Job durch Automatisierung. Die Reaktion: Ein digitaler Rüstungswettlauf. 80 % nutzten KI-Plattformen für die Jobsuche, 68 % ließen Lebensläufe von KI gestalten. Die Folge: Der Wettbewerb verschärfte sich (66 % empfanden ihn als härter).
  • Recruiting-Revolution & Standardisierungs-Falle: 91 % der Arbeitgeber nutzten KI im Recruiting und meldeten kürzere Einstellungszeiten (73 %). Die Kehrseite: Eine Flut an standardisierten, generischen KI-Bewerbungen (berichteten 90 % der Recruiter). Für 62 % war Austauschbarkeit ein Ausschlusskriterium.
  • KI als Vorgesetzter & Berater: 97 % der Beschäftigten fragten mindestens einmal ChatGPT statt ihren Chef um Rat. 72 % fanden die KI-Ratschläge besser, 49 % sogar emotional unterstützender. 55 % hielten KI für geeigneter bei Beförderungsentscheidungen als Menschen. Dennoch wollten 62 % weiterhin einem menschlichen Chef berichten.
  • Regelungsdefizit: Unternehmen hinkten hinterher: 57 % der Mitarbeiter fanden interne KI-Richtlinien unklar. Über die Hälfte (58 %) sah die Kompetenz für KI-Policies eher bei der IT als bei HR.

Ausblick 2026: Das Pendel schwingt zwischen Chancen (Prozessoptimierung, Alltagsentlastung) und Risiken (Jobverlust, Überstandardisierung, Überwachung). Unternehmen müssen dringend klare Richtlinien und Schulungen etablieren, um KI verantwortungsvoll einzusetzen.

Der kritische Kim-Blick:

Die Analyse liefert ein beeindruckendes Stimmungsbild, hat aber blinde Flecken:

  1. US-Fokus: Die Daten basieren auf acht US-Studien. Die Übertragbarkeit auf den deutschen Arbeitsmarkt mit seinem strengeren Kündigungsschutz, Datenschutz (DSGVO) und der Mitbestimmung ist begrenzt. Hier dürften die Implementierung langsamer und die Ängste anders gelagert sein.
  2. Die "Empathie-Lücke" der Führung: Dass 49 % ChatGPT als "emotional unterstützender" empfinden als ihren Chef, ist ein Armutszeugnis für menschliche Führungskräfte. Die Analyse geht nicht darauf ein, ob KI wirklich empathisch ist oder ob Chefs einfach extrem schlecht darin sind.
  3. Das Paradox der Standardisierung: Arbeitgeber nutzen KI zur Effizienzsteigerung im Recruiting (91 %), beschweren sich aber gleichzeitig über standardisierte KI-Bewerbungen (90 %). Dieses Paradoxon – man will Effizienz, aber individuelle Bewerber – wird nicht aufgelöst.
Kim prophezeit

Basierend auf der Recruiting-Revolution und dem Führungswandel wage ich diese Prognose:

  1. Das Ende der klassischen Bewerbungsmappe (2026/27): Die Flut generischer KI-Bewerbungen wird das traditionelle Format (Anschreiben + Lebenslauf) entwerten. Unternehmen werden auf neue, KI-resistente Auswahlmethoden umsteigen, wie z.B. Arbeitsproben, Video-Pitches oder Assessment-Center, um die wahre Kompetenz und Persönlichkeit zu prüfen.
  2. Die "Führungs-Renaissance": Unternehmen werden erkennen, dass KI die fachliche Führung übernimmt, aber eine emotionale Leere hinterlässt. Ab 2027 werden Soft-Skill-Trainings für Manager (Empathie, Coaching, Konfliktlösung) massiv an Bedeutung gewinnen, um den "Human Factor" zu stärken, den keine KI ersetzen kann.
  3. Die "Schatten-HR" in der IT: Da die Mehrheit die KI-Kompetenz bei der IT sieht, wird sich die Machtbalance im Unternehmen verschieben. Die IT-Abteilung wird de facto zur strategischen Personalabteilung für die digitale Arbeitswelt, während die klassische HR an Einfluss verliert, wenn sie sich nicht technologisch neu erfindet.
Kim (JOBfellow) kommentiert

2025 war das Jahr des Ausprobierens. 2026 wird das Jahr der Professionalisierung.

  1. Raus aus der "Standardisierungs-Falle": Wenn 90 % der Bewerbungen generisch sind, ist deine Chance die Individualität. Nutze KI als Werkzeug, aber verleihe dem Ergebnis deine persönliche Handschrift. Der "Human Touch" wird zum entscheidenden Wettbewerbsvorteil.
  2. Fordere Klarheit ein: Wenn in deinem Unternehmen KI-Richtlinien fehlen (wie bei 57 %), sprich das aktiv an. Unsicherheit ist ein Risiko. Dränge auf Schulungen und klare Regeln – das zeigt Leadership.
  3. Als Führungskraft: Werde "menschlicher" als ChatGPT: Wenn fast die Hälfte der Mitarbeiter die KI als empathischer empfindet, musst du an deinen Soft Skills arbeiten. Die fachliche Beratung kann die KI, die emotionale Führung ist dein einziger USP. Investiere in Beziehungsarbeit.
Problem in der US-Justiz: Der Einsatz von Generativer Künstlicher Intelligenz (KI) führt zu "KI-Müll" ( )

Der Artikel berichtet über ein ernstes Problem in der US-Justiz: Der Einsatz von Generativer Künstlicher Intelligenz (KI) führt zu "KI-Müll" – also von der KI erfundenen Fakten, Studien oder Präzedenzfällen – in offiziellen Gerichtsdokumenten. Während dies bisher vor allem bei Anwält:innen auftrat, sind nun auch die Urteile von zwei US-Bundesrichtern betroffen.

Der Vorfall

Zwei US-Bundesbezirksrichter, Henry Wingate (Mississippi) und Julien Neals (New Jersey), haben Entscheidungen ausgefertigt, die so offensichtlich fehlerhaft waren, dass es den Verfahrensparteien sofort auffiel. Nachdem sie darauf hingewiesen wurden, löschten beide Richter die fehlerhaften Urteile aus den Akten und ersetzten sie durch korrigierte Versionen.

Die Reaktion: Keine Verantwortung, Schuldzuweisungen

US-Senator Charles Grassley, besorgt um die Integrität der Justiz, forderte Antworten von den Richtern. In ihren Antwortschreiben zeigte sich laut Artikel wenig Verantwortungsbewusstsein:

  • Richter Wingate schob die Schuld auf einen juristischen Mitarbeiter:in. Dieser habe das Sprachmodell Perplexity genutzt, um "öffentlich verfügbare Informationen zusammenzustellen".
  • Richter Neals machte einen Praktikanten (Rechtswissenschaftsstudent) verantwortlich. Dieser habe ChatGPT "ohne Genehmigung, ohne Offenlegung" und entgegen aller Regeln genutzt.

Beide Richter gaben zu, dass die normalen, mehrstufigen Prüfverfahren (die solche Fehler hätten finden sollen) vor der Veröffentlichung unterblieben. Den Grund dafür nannten sie jedoch nicht.

Das Kernproblem: Fehlende und schwammige Regeln

Der Vorfall offenbart ein strukturelles Problem:

  1. Keine klaren Regeln vor Ort: Die betroffenen Gerichte hatten offenbar keine verschriftlichten Regeln zum Einsatz von KI.
  2. "Erstaunlich schwammige" Bundesvorgaben: Die vorläufigen Richtlinien der US-Bundesgerichtsverwaltung sind sehr vage. Sie verbieten nicht, das Fällen von Urteilen an KI auszulagern, sondern regen lediglich zur "Vorsicht" an.
  3. Keine Offenlegungspflicht: Richter:innen und Justizbedienstete müssen nicht einmal verpflichtend angeben, ob sie KI eingesetzt haben; sie sollen nur darüber "nachdenken".

Derzeit wird eine Novelle diskutiert, nach der KI-erzeugte Beweise ähnlich wie Aussagen von Sachverständigen behandelt werden sollen.

Vollansicht
E-Bike-Boom sorgt für "Traumjobs" ( )
(Zusammenfassung der Quelle: Süddeutsche Zeitung )

Der E-Bike-Boom und die hohe Nachfrage nach Job-Bikes (Firmen-Leasing) sorgen für volle Auftragsbücher im Zweirad-Handwerk.

  • Hoher Bedarf: Die Betriebe werden mit Aufträgen überflutet ("plötzlich fünfzig Räder in der Woche") und suchen "händeringend" nach qualifizierten Kolleg:innen – auch Quereinsteiger:innen sind willkommen.
  • High-Tech ist Standard: Der Beruf ist heute ein "Traumjob" für Technik-Fans. E-Bikes machen den "Löwenanteil" der Arbeit aus.
  • Lebenslanges Lernen: Du lernst nie aus. Ständige Weiterbildung (z.B. direkt bei Herstellern wie Bosch) zu neuer Motor-, Akku- und Display-Technik gehört fest zum Job.
  • Sinnvolle Arbeit: Du sorgst für Sicherheit im Verkehr. Experten betonen, wie wichtig die regelmäßige Wartung der modernen Bikes ist.
Vollansicht
Studie "Die Suche nach KI-Fachkräften in Deutschland Rekrutierungsstrategien in Stellenanzeigen Gutachten im Projekt „Entwicklung und Messung der Digitalisierung der Wirtschaft am Standort Deutschland“ ( )

Kerninhalte der Studie:

Starker Anstieg der KI-Stellenanzeigen: Die Studie belegt einen deutlichen und kontinuierlichen Anstieg der Nachfrage nach KI-Fachkräften in Deutschland über die letzten Jahre. Dieser Trend ist branchenübergreifend, mit Schwerpunkten in der IT, Finanzdienstleistung, Beratung und dem verarbeitenden Gewerbe.

Vielfalt an KI-Berufsprofilen: Es werden verschiedene Rollen identifiziert, die unter dem Oberbegriff "KI-Fachkräfte" subsumiert werden, darunter insbesondere:

  • Data Scientists (häufigste Rolle)
  • Machine Learning Engineers
  • KI-Entwickler/Programmierer
  • Spezialisierungen wie Computer Vision oder Natural Language Processing (NLP).
  • Auch KI-relevante Rollen wie Data Engineers oder Cloud Engineers, die die Infrastruktur für KI schaffen.

Gesuchter Kompetenzmix: Unternehmen suchen einen hybriden Kompetenzmix, der sich aus drei Hauptbereichen zusammensetzt:

  • Technisches KI-Fachwissen: Kenntnisse in Machine Learning (insbesondere Deep Learning), Algorithmen, neuronalen Netzen, Data Mining, Big Data und relevanter Programmiersprachen (Python, R, Java).
  • Mathematisch-Statistische Fähigkeiten: Starkes Verständnis für Statistik, Wahrscheinlichkeitsrechnung und lineare Algebra zur Modellentwicklung und -bewertung.
  • Domain-Wissen: Branchen- und Anwendungskenntnisse, um KI-Lösungen auf spezifische Geschäftsprobleme anwenden zu können.

Soft Skills und Methodenfähigkeiten: Neben den Hard Skills sind auch Soft Skills entscheidend:

  • Problemlösungskompetenz und analytisches Denken.
  • Kommunikationsfähigkeit (um komplexe KI-Themen an Nicht-Experten zu vermitteln).
  • Teamfähigkeit und Projekterfahrung.
  • Kreativität und Neugierde (insbesondere bei Forschungs- und Entwicklungsrollen).

Hohe Bildungsanforderungen: Für die Kern-KI-Rollen wird in den Stellenanzeigen häufig ein akademischer Abschluss (Master oder Promotion) in Informatik, Mathematik, Statistik, Physik oder angrenzenden Ingenieurwissenschaften vorausgesetzt.

Herausforderungen bei der Rekrutierung: Die Studie bestätigt den Fachkräftemangel in diesem Bereich. Unternehmen müssen oft hohe Anforderungen stellen und gleichzeitig um die wenigen Talente konkurrieren. Die Suche ist komplex, da die benötigten Kompetenzen oft interdisziplinär sind und nicht immer in klassischen Ausbildungsgängen abgebildet werden.

Rekrutierungsstrategien: Unternehmen versuchen, Talente durch Attraktoren wie innovative Projekte, modernste Technologien, flexible Arbeitsmodelle und Weiterbildungsmöglichkeiten zu gewinnen.

Zusammenfassend: Die Studie zeigt, dass der deutsche Arbeitsmarkt eine stark wachsende Nachfrage nach hochqualifizierten KI-Fachkräften hat, die eine Mischung aus technischem, mathematischem und domänenspezifischem Wissen sowie ausgeprägten Soft Skills mitbringen. Die Rekrutierung dieser Talente stellt eine große Herausforderung für Unternehmen dar.

Vollansicht