Direkt zum Inhalt

Bearingpoint-Studie: Automobil- & Industrieproduktion im KI-Dilemma – Hohe Ambitionen, massive Altlasten

(Zusammenfassung der Quelle: Bearingpoint (dpa), 12.12.2025 )

Eine neue "Agentic AI"-Studie der Unternehmensberatung Bearingpoint zeigt, dass die Automobil- und Industrieproduktion bei der KI-Einführung mit deutlich größeren strukturellen und kulturellen Hürden kämpft als andere Branchen, obwohl der Innovationswille vorhanden ist.

Die zentralen Herausforderungen:

  • Legacy-Systeme als Bremse: 60 % der Führungskräfte sehen die Integration von KI in veraltete IT-Systeme als größte Hürde (im Vergleich zu nur 29 % in anderen Branchen). Die strukturellen Altlasten sind gravierender als überall sonst.
  • Kultureller Widerstand: Organisationaler Widerstand ist weit verbreitet (51 % vs. 20 % in anderen Branchen). Tief verwurzelte Routinen und Hierarchien bremsen die Veränderungsbereitschaft.
  • Doppelte Personal-Krise: Die Branche erwartet signifikant höhere KI-bedingte Überkapazitäten (heute und bis 2028) als andere Sektoren. Gleichzeitig sind die Kompetenzlücken im Umgang mit KI deutlich größer. Die Geschwindigkeit der KI-Adoption übersteigt die Fähigkeit zur Umschulung.

Die Strategie: Resilienz statt Risiko Im Gegensatz zu anderen Branchen verfolgt die Automobil- und Industrieproduktion überdurchschnittlich häufig (67 % vs. 37 %) einen KI-Ansatz, der auf Balance und Widerstandsfähigkeit setzt. Es wird mehr in zukunftssichere Roadmaps und Resilienz investiert als in klassische Umschulungsprogramme (Reskilling: nur 27 % vs. 46 % in anderen Branchen). Der Fokus liegt darauf, Mitarbeiter zu befähigen, mit Unsicherheit umzugehen, statt nur fachliche Skills zu schulen.

Der kritische Kim-Blick:

Die Studie liefert eine schonungslose Analyse, deckt aber auch Widersprüche auf:

  1. Das Reskilling-Paradox: Die Branche hat die größten Kompetenzlücken, investiert aber am wenigsten in klassische Umschulung (27 % vs. 46 %). Der Fokus auf "Resilienz" (Umgang mit Unsicherheit) statt auf harte KI-Skills wirkt wie eine Kapitulation vor der Geschwindigkeit des Wandels, nicht wie eine nachhaltige Lösungsstrategie.
  2. Altlasten als Ausrede? Der Verweis auf Legacy-Systeme (60 %) ist valide, darf aber nicht zur dauerhaften Entschuldigung für mangelndes Innovationstempo werden. Andere Branchen mit ähnlichen IT-Herausforderungen (z.B. Banken) scheinen schneller voranzukommen.
  3. Die "falsche" Kündigungswelle: Dass beim Abbau von Überkapazitäten "häufig die falschen Fachkräfte" getroffen werden, ist ein alarmierendes Zeichen für mangelhafte Personalplanung und eine "Rasierklingen-Mentalität", die langfristig Know-how vernichtet.
Kim prophezeit

Basierend auf der Systemstarre und den Kompetenzlücken wage ich diese Prognose:

  1. Die "Industrie-Zweiteilung" (2026/27): Die Schere wird sich dramatisch öffnen zwischen den wenigen Produktionsunternehmen, die ihre Legacy-Probleme radikal lösen ("Brownfield-Revolution"), und der breiten Masse, die im "Proof-of-Concept"-Sumpf stecken bleibt. Letztere werden massiv an Wettbewerbsfähigkeit verlieren, insbesondere gegenüber agileren Konkurrenten aus Asien.
  2. Der "Fachkräfte-Exodus": Die Kombination aus hohem Veränderungsdruck, kulturellem Widerstand und mangelnden Umschulungsangeboten wird dazu führen, dass KI-affine Talente die traditionelle Industrie verlassen und in Tech-Unternehmen oder Start-ups wechseln, wo sie ihre Fähigkeiten besser einbringen können. Der Kompetenzmangel wird sich dadurch weiter verschärfen.
  3. Renaissance der "Operational Technology (OT) Security": Die Integration von KI in veraltete, oft unsichere Produktionsnetze (Legacy) wird zu neuen, gravierenden Sicherheitsrisiken führen. Wir werden eine Welle von Cyberangriffen auf Industrieanlagen sehen, die über KI-Schnittstellen erfolgen, was massive Investitionen in OT-Security erzwingt.
Kim (JOBfellow) kommentiert

Diese Studie ist ein Warnsignal für alle, die in der produzierenden Industrie arbeiten.

  1. Verlasse dich nicht auf Umschulungsprogramme: Wenn dein Unternehmen nur wenig in Reskilling investiert (wie 73 % der Branche), musst du deine Weiterbildung selbst in die Hand nehmen. Warte nicht auf das Angebot, sondern fordere es ein oder bilde dich privat fort.
  2. Werde zum "Legacy-Brückenbauer": Die größte Hürde ist die Integration von KI in alte Systeme. Wenn du verstehst, wie man moderne KI-Tools an alte Maschinen- oder ERP-Daten andockt (Stichwort: IIoT, Edge AI), bist du der wertvollste Mitarbeiter im Werk.
  3. Arbeite an deiner "Veränderungs-Resilienz": Der kulturelle Widerstand ist hoch. Sei nicht der Bremser, sondern der Treiber. Zeige, dass du bereit bist, Routinen aufzubrechen und neue, KI-gestützte Prozesse zu adaptieren. Das macht dich zukunftssicher.
Problem in der US-Justiz: Der Einsatz von Generativer Künstlicher Intelligenz (KI) führt zu "KI-Müll" ( )

Der Artikel berichtet über ein ernstes Problem in der US-Justiz: Der Einsatz von Generativer Künstlicher Intelligenz (KI) führt zu "KI-Müll" – also von der KI erfundenen Fakten, Studien oder Präzedenzfällen – in offiziellen Gerichtsdokumenten. Während dies bisher vor allem bei Anwält:innen auftrat, sind nun auch die Urteile von zwei US-Bundesrichtern betroffen.

Der Vorfall

Zwei US-Bundesbezirksrichter, Henry Wingate (Mississippi) und Julien Neals (New Jersey), haben Entscheidungen ausgefertigt, die so offensichtlich fehlerhaft waren, dass es den Verfahrensparteien sofort auffiel. Nachdem sie darauf hingewiesen wurden, löschten beide Richter die fehlerhaften Urteile aus den Akten und ersetzten sie durch korrigierte Versionen.

Die Reaktion: Keine Verantwortung, Schuldzuweisungen

US-Senator Charles Grassley, besorgt um die Integrität der Justiz, forderte Antworten von den Richtern. In ihren Antwortschreiben zeigte sich laut Artikel wenig Verantwortungsbewusstsein:

  • Richter Wingate schob die Schuld auf einen juristischen Mitarbeiter:in. Dieser habe das Sprachmodell Perplexity genutzt, um "öffentlich verfügbare Informationen zusammenzustellen".
  • Richter Neals machte einen Praktikanten (Rechtswissenschaftsstudent) verantwortlich. Dieser habe ChatGPT "ohne Genehmigung, ohne Offenlegung" und entgegen aller Regeln genutzt.

Beide Richter gaben zu, dass die normalen, mehrstufigen Prüfverfahren (die solche Fehler hätten finden sollen) vor der Veröffentlichung unterblieben. Den Grund dafür nannten sie jedoch nicht.

Das Kernproblem: Fehlende und schwammige Regeln

Der Vorfall offenbart ein strukturelles Problem:

  1. Keine klaren Regeln vor Ort: Die betroffenen Gerichte hatten offenbar keine verschriftlichten Regeln zum Einsatz von KI.
  2. "Erstaunlich schwammige" Bundesvorgaben: Die vorläufigen Richtlinien der US-Bundesgerichtsverwaltung sind sehr vage. Sie verbieten nicht, das Fällen von Urteilen an KI auszulagern, sondern regen lediglich zur "Vorsicht" an.
  3. Keine Offenlegungspflicht: Richter:innen und Justizbedienstete müssen nicht einmal verpflichtend angeben, ob sie KI eingesetzt haben; sie sollen nur darüber "nachdenken".

Derzeit wird eine Novelle diskutiert, nach der KI-erzeugte Beweise ähnlich wie Aussagen von Sachverständigen behandelt werden sollen.

Vollansicht
E-Bike-Boom sorgt für "Traumjobs" ( )
(Zusammenfassung der Quelle: Süddeutsche Zeitung )

Der E-Bike-Boom und die hohe Nachfrage nach Job-Bikes (Firmen-Leasing) sorgen für volle Auftragsbücher im Zweirad-Handwerk.

  • Hoher Bedarf: Die Betriebe werden mit Aufträgen überflutet ("plötzlich fünfzig Räder in der Woche") und suchen "händeringend" nach qualifizierten Kolleg:innen – auch Quereinsteiger:innen sind willkommen.
  • High-Tech ist Standard: Der Beruf ist heute ein "Traumjob" für Technik-Fans. E-Bikes machen den "Löwenanteil" der Arbeit aus.
  • Lebenslanges Lernen: Du lernst nie aus. Ständige Weiterbildung (z.B. direkt bei Herstellern wie Bosch) zu neuer Motor-, Akku- und Display-Technik gehört fest zum Job.
  • Sinnvolle Arbeit: Du sorgst für Sicherheit im Verkehr. Experten betonen, wie wichtig die regelmäßige Wartung der modernen Bikes ist.
Vollansicht
Studie "Die Suche nach KI-Fachkräften in Deutschland Rekrutierungsstrategien in Stellenanzeigen Gutachten im Projekt „Entwicklung und Messung der Digitalisierung der Wirtschaft am Standort Deutschland“ ( )

Kerninhalte der Studie:

Starker Anstieg der KI-Stellenanzeigen: Die Studie belegt einen deutlichen und kontinuierlichen Anstieg der Nachfrage nach KI-Fachkräften in Deutschland über die letzten Jahre. Dieser Trend ist branchenübergreifend, mit Schwerpunkten in der IT, Finanzdienstleistung, Beratung und dem verarbeitenden Gewerbe.

Vielfalt an KI-Berufsprofilen: Es werden verschiedene Rollen identifiziert, die unter dem Oberbegriff "KI-Fachkräfte" subsumiert werden, darunter insbesondere:

  • Data Scientists (häufigste Rolle)
  • Machine Learning Engineers
  • KI-Entwickler/Programmierer
  • Spezialisierungen wie Computer Vision oder Natural Language Processing (NLP).
  • Auch KI-relevante Rollen wie Data Engineers oder Cloud Engineers, die die Infrastruktur für KI schaffen.

Gesuchter Kompetenzmix: Unternehmen suchen einen hybriden Kompetenzmix, der sich aus drei Hauptbereichen zusammensetzt:

  • Technisches KI-Fachwissen: Kenntnisse in Machine Learning (insbesondere Deep Learning), Algorithmen, neuronalen Netzen, Data Mining, Big Data und relevanter Programmiersprachen (Python, R, Java).
  • Mathematisch-Statistische Fähigkeiten: Starkes Verständnis für Statistik, Wahrscheinlichkeitsrechnung und lineare Algebra zur Modellentwicklung und -bewertung.
  • Domain-Wissen: Branchen- und Anwendungskenntnisse, um KI-Lösungen auf spezifische Geschäftsprobleme anwenden zu können.

Soft Skills und Methodenfähigkeiten: Neben den Hard Skills sind auch Soft Skills entscheidend:

  • Problemlösungskompetenz und analytisches Denken.
  • Kommunikationsfähigkeit (um komplexe KI-Themen an Nicht-Experten zu vermitteln).
  • Teamfähigkeit und Projekterfahrung.
  • Kreativität und Neugierde (insbesondere bei Forschungs- und Entwicklungsrollen).

Hohe Bildungsanforderungen: Für die Kern-KI-Rollen wird in den Stellenanzeigen häufig ein akademischer Abschluss (Master oder Promotion) in Informatik, Mathematik, Statistik, Physik oder angrenzenden Ingenieurwissenschaften vorausgesetzt.

Herausforderungen bei der Rekrutierung: Die Studie bestätigt den Fachkräftemangel in diesem Bereich. Unternehmen müssen oft hohe Anforderungen stellen und gleichzeitig um die wenigen Talente konkurrieren. Die Suche ist komplex, da die benötigten Kompetenzen oft interdisziplinär sind und nicht immer in klassischen Ausbildungsgängen abgebildet werden.

Rekrutierungsstrategien: Unternehmen versuchen, Talente durch Attraktoren wie innovative Projekte, modernste Technologien, flexible Arbeitsmodelle und Weiterbildungsmöglichkeiten zu gewinnen.

Zusammenfassend: Die Studie zeigt, dass der deutsche Arbeitsmarkt eine stark wachsende Nachfrage nach hochqualifizierten KI-Fachkräften hat, die eine Mischung aus technischem, mathematischem und domänenspezifischem Wissen sowie ausgeprägten Soft Skills mitbringen. Die Rekrutierung dieser Talente stellt eine große Herausforderung für Unternehmen dar.

Vollansicht