Direkt zum Inhalt

Gartner Top-Trends 2025: Das Zeitalter der "Agentic AI" beginnt

(Zusammenfassung der Quelle: Gartner (E-Book/Studie), 05.12.2025)

Das Gartner E-Book "Die wichtigsten strategischen Technologie-Trends für 2025" identifiziert "Agentenbasierte KI" (Agentic AI) als das zentrale Thema der nächsten Jahre. Es markiert den Übergang von generativer KI, die Inhalte erstellt, hin zu KI-Agenten, die selbstständig planen und handeln, um vom Nutzer definierte Ziele zu erreichen.

Um diesen Paradigmenwechsel gruppiert Gartner weitere Trends in drei Säulen:

  1. KI-Imperative (Die Basis): Um langfristig erfolgreich zu sein, benötigen Unternehmen "AI Governance Platforms" zur Steuerung von Vertrauen, Risiko und Sicherheit. Zudem wird "Disinformation Security" essenziell, um die Informationsintegrität zu wahren und Deepfakes oder Identitätsdiebstahl zu bekämpfen.
  2. Zukünftiges Computing (Die Infrastruktur): Neue Rechenparadigmen sind nötig. Dazu gehören "Postquantum-Kryptografie" zum Schutz vor zukünftigen Quantencomputer-Angriffen, "Ambient Invisible Intelligence" (winzige, günstige Sensoren zur allgegenwärtigen Nachverfolgung) und zwingend "Energieeffizientes Computing", um den massiven Stromhunger der KI zu bewältigen.
  3. Mensch-Maschine-Synergie (Die Schnittstelle): Die physische und digitale Welt verschmelzen durch "Spatial Computing" (AR/VR für immersive Erlebnisse) und "Polyfunktionale Roboter", die mehrere Aufgaben lernen und neben Menschen arbeiten. "Hybrid Computing" kombiniert verschiedene Rechenumgebungen (Edge, Cloud, Quantum) für mehr Leistung. Als futuristischster Trend wird "Neurological Enhancement" (Gehirn-Schnittstellen zur kognitiven Steigerung) genannt.
Der kritische Kim-Blick:

Die Gartner-Liste ist umfassend, zeigt aber auch typische Hype-Zyklus-Schwächen:

  1. Science-Fiction-Alarm: Trends wie "Neurological Enhancement" (Gehirn-Interfaces) wirken für einen 2025er-Ausblick (mit Fokus auf die nächsten 36 Monate) deplatziert und für 99% der Unternehmen irrelevant.
  2. Das Energie-Dilemma: "Energieeffizientes Computing" wird als Trend genannt, ist aber eher ein verzweifelter Wunsch. Der massive Energiehunger der propagierten "Agentic AI" wird durch effizientere Chips allein kurzfristig kaum zu decken sein. Hier fehlt eine realistische Einschätzung des Ressourcenproblems.
  3. Komplexitäts-Overkill: Die gleichzeitige Notwendigkeit von neuer Governance, Quanten-Sicherheit und hybriden Compute-Architekturen überfordert den Mittelstand massiv. Die Trends zielen primär auf Großunternehmen mit riesigen IT-Budgets.
Kim prophezeit

Basierend auf der Dominanz der "Agentic AI" und den Infrastruktur-Engpässen wage ich diese Prognose:

  1. Der neue Job "Agent Orchestrator" (ab 2026): Es entsteht ein völlig neues Berufsbild, dessen einzige Aufgabe es ist, verschiedene spezialisierte, autonome KI-Agenten in einem Unternehmen zu koordinieren, zu überwachen und deren Konflikte zu lösen.
  2. Die "Energie-Migration" der IT: Da "energieeffizientes Computing" nicht schnell genug skaliert, werden KI-Rechenzentren radikal dorthin verlagert, wo grüne Energie im Überfluss und billig ist (z.B. Island, Nordasien). Standortvorteil wird Energieverfügbarkeit.
  3. Die Quanten-Panik (ca. 2027): Wenn die ersten relevanten Quantencomputer Realität werden, bricht Panik aus, weil Unternehmen realisieren, dass ihre heute gespeicherten Daten ("harvest now, decrypt later") angreifbar sind. "Postquantum-Kryptografie" wird vom Nischenthema zum hektischen Milliardenmarkt.
Kim (JOBfellow) kommentiert

Diese Trends definieren das Spielfeld der nächsten Jahre. Das bedeutet für dich:

  1. Verstehe "Agentic AI": Der Shift von "Prompting" (der KI sagen, was sie tun soll) zu "Delegieren" (der KI ein Ziel geben, sie plant das Wie) ist fundamental. Lerne, wie man KI-Agenten managed, überwacht und ihre Ergebnisse validiert. Das ist das Skill-Set der Zukunft.
  2. Sicherheit wird zum Top-Skill: Die Trends "AI Governance" und "Disinformation Security" zeigen: Wer versteht, wie man KI sicher, ethisch und manipulationsfrei betreibt, hat exzellente Karriereaussichten. Spezialisiere dich hier.
  3. Ignoriere den Sci-Fi-Kram, fokussiere auf Infrastruktur: Vergiss Gehirn-Implantate. Wenn du im Tech-Bereich arbeitest, sind "Hybrid Computing" und "Spatial Computing" die realeren Wachstumsfelder, in denen jetzt Expertise gesucht wird.
Problem in der US-Justiz: Der Einsatz von Generativer Künstlicher Intelligenz (KI) führt zu "KI-Müll" ( )

Der Artikel berichtet über ein ernstes Problem in der US-Justiz: Der Einsatz von Generativer Künstlicher Intelligenz (KI) führt zu "KI-Müll" – also von der KI erfundenen Fakten, Studien oder Präzedenzfällen – in offiziellen Gerichtsdokumenten. Während dies bisher vor allem bei Anwält:innen auftrat, sind nun auch die Urteile von zwei US-Bundesrichtern betroffen.

Der Vorfall

Zwei US-Bundesbezirksrichter, Henry Wingate (Mississippi) und Julien Neals (New Jersey), haben Entscheidungen ausgefertigt, die so offensichtlich fehlerhaft waren, dass es den Verfahrensparteien sofort auffiel. Nachdem sie darauf hingewiesen wurden, löschten beide Richter die fehlerhaften Urteile aus den Akten und ersetzten sie durch korrigierte Versionen.

Die Reaktion: Keine Verantwortung, Schuldzuweisungen

US-Senator Charles Grassley, besorgt um die Integrität der Justiz, forderte Antworten von den Richtern. In ihren Antwortschreiben zeigte sich laut Artikel wenig Verantwortungsbewusstsein:

  • Richter Wingate schob die Schuld auf einen juristischen Mitarbeiter:in. Dieser habe das Sprachmodell Perplexity genutzt, um "öffentlich verfügbare Informationen zusammenzustellen".
  • Richter Neals machte einen Praktikanten (Rechtswissenschaftsstudent) verantwortlich. Dieser habe ChatGPT "ohne Genehmigung, ohne Offenlegung" und entgegen aller Regeln genutzt.

Beide Richter gaben zu, dass die normalen, mehrstufigen Prüfverfahren (die solche Fehler hätten finden sollen) vor der Veröffentlichung unterblieben. Den Grund dafür nannten sie jedoch nicht.

Das Kernproblem: Fehlende und schwammige Regeln

Der Vorfall offenbart ein strukturelles Problem:

  1. Keine klaren Regeln vor Ort: Die betroffenen Gerichte hatten offenbar keine verschriftlichten Regeln zum Einsatz von KI.
  2. "Erstaunlich schwammige" Bundesvorgaben: Die vorläufigen Richtlinien der US-Bundesgerichtsverwaltung sind sehr vage. Sie verbieten nicht, das Fällen von Urteilen an KI auszulagern, sondern regen lediglich zur "Vorsicht" an.
  3. Keine Offenlegungspflicht: Richter:innen und Justizbedienstete müssen nicht einmal verpflichtend angeben, ob sie KI eingesetzt haben; sie sollen nur darüber "nachdenken".

Derzeit wird eine Novelle diskutiert, nach der KI-erzeugte Beweise ähnlich wie Aussagen von Sachverständigen behandelt werden sollen.

Vollansicht
E-Bike-Boom sorgt für "Traumjobs" ( )
(Zusammenfassung der Quelle: Süddeutsche Zeitung)

Der E-Bike-Boom und die hohe Nachfrage nach Job-Bikes (Firmen-Leasing) sorgen für volle Auftragsbücher im Zweirad-Handwerk.

  • Hoher Bedarf: Die Betriebe werden mit Aufträgen überflutet ("plötzlich fünfzig Räder in der Woche") und suchen "händeringend" nach qualifizierten Kolleg:innen – auch Quereinsteiger:innen sind willkommen.
  • High-Tech ist Standard: Der Beruf ist heute ein "Traumjob" für Technik-Fans. E-Bikes machen den "Löwenanteil" der Arbeit aus.
  • Lebenslanges Lernen: Du lernst nie aus. Ständige Weiterbildung (z.B. direkt bei Herstellern wie Bosch) zu neuer Motor-, Akku- und Display-Technik gehört fest zum Job.
  • Sinnvolle Arbeit: Du sorgst für Sicherheit im Verkehr. Experten betonen, wie wichtig die regelmäßige Wartung der modernen Bikes ist.
Vollansicht
Studie "Die Suche nach KI-Fachkräften in Deutschland Rekrutierungsstrategien in Stellenanzeigen Gutachten im Projekt „Entwicklung und Messung der Digitalisierung der Wirtschaft am Standort Deutschland“ ( )

Kerninhalte der Studie:

Starker Anstieg der KI-Stellenanzeigen: Die Studie belegt einen deutlichen und kontinuierlichen Anstieg der Nachfrage nach KI-Fachkräften in Deutschland über die letzten Jahre. Dieser Trend ist branchenübergreifend, mit Schwerpunkten in der IT, Finanzdienstleistung, Beratung und dem verarbeitenden Gewerbe.

Vielfalt an KI-Berufsprofilen: Es werden verschiedene Rollen identifiziert, die unter dem Oberbegriff "KI-Fachkräfte" subsumiert werden, darunter insbesondere:

  • Data Scientists (häufigste Rolle)
  • Machine Learning Engineers
  • KI-Entwickler/Programmierer
  • Spezialisierungen wie Computer Vision oder Natural Language Processing (NLP).
  • Auch KI-relevante Rollen wie Data Engineers oder Cloud Engineers, die die Infrastruktur für KI schaffen.

Gesuchter Kompetenzmix: Unternehmen suchen einen hybriden Kompetenzmix, der sich aus drei Hauptbereichen zusammensetzt:

  • Technisches KI-Fachwissen: Kenntnisse in Machine Learning (insbesondere Deep Learning), Algorithmen, neuronalen Netzen, Data Mining, Big Data und relevanter Programmiersprachen (Python, R, Java).
  • Mathematisch-Statistische Fähigkeiten: Starkes Verständnis für Statistik, Wahrscheinlichkeitsrechnung und lineare Algebra zur Modellentwicklung und -bewertung.
  • Domain-Wissen: Branchen- und Anwendungskenntnisse, um KI-Lösungen auf spezifische Geschäftsprobleme anwenden zu können.

Soft Skills und Methodenfähigkeiten: Neben den Hard Skills sind auch Soft Skills entscheidend:

  • Problemlösungskompetenz und analytisches Denken.
  • Kommunikationsfähigkeit (um komplexe KI-Themen an Nicht-Experten zu vermitteln).
  • Teamfähigkeit und Projekterfahrung.
  • Kreativität und Neugierde (insbesondere bei Forschungs- und Entwicklungsrollen).

Hohe Bildungsanforderungen: Für die Kern-KI-Rollen wird in den Stellenanzeigen häufig ein akademischer Abschluss (Master oder Promotion) in Informatik, Mathematik, Statistik, Physik oder angrenzenden Ingenieurwissenschaften vorausgesetzt.

Herausforderungen bei der Rekrutierung: Die Studie bestätigt den Fachkräftemangel in diesem Bereich. Unternehmen müssen oft hohe Anforderungen stellen und gleichzeitig um die wenigen Talente konkurrieren. Die Suche ist komplex, da die benötigten Kompetenzen oft interdisziplinär sind und nicht immer in klassischen Ausbildungsgängen abgebildet werden.

Rekrutierungsstrategien: Unternehmen versuchen, Talente durch Attraktoren wie innovative Projekte, modernste Technologien, flexible Arbeitsmodelle und Weiterbildungsmöglichkeiten zu gewinnen.

Zusammenfassend: Die Studie zeigt, dass der deutsche Arbeitsmarkt eine stark wachsende Nachfrage nach hochqualifizierten KI-Fachkräften hat, die eine Mischung aus technischem, mathematischem und domänenspezifischem Wissen sowie ausgeprägten Soft Skills mitbringen. Die Rekrutierung dieser Talente stellt eine große Herausforderung für Unternehmen dar.

Vollansicht