Direkt zum Inhalt

WTW-Umfrage: KI in der bAV-Verwaltung – Große Chancen, klare Grenzen

(Zusammenfassung der Quelle: WTW (Umfrage), 04.12.2025)

Eine neue Umfrage von WTW ("Künstliche Intelligenz in der bAV-Administration 2025", durchgeführt Sept./Okt. 2025 unter 24 Großunternehmen) zeigt: KI ist in der betrieblichen Altersversorgung (bAV) angekommen. Über 80 % der Unternehmen nutzen oder testen bereits KI-Tools wie Chatbots, digitale Assistenten und Wissensmanagement-Systeme.

Treiber und Status Quo: Wirtschaftlicher Druck (Restrukturierung), knappe IT-Budgets und der demografische Wandel (Wissenssicherung) beschleunigen den KI-Einsatz als Effizienz- und Produktivitätshebel. Aktuell dominieren strukturierte Aufgaben: Chatbots für einfache Anfragen (ca. 25 %) und KI im Wissensmanagement (knapp 20 %). Komplexe Prozesse (Sachbearbeitung, Datenprüfung) sind noch die Ausnahme.

Chancen vs. Hemmnisse: Unternehmen erwarten Effizienzgewinne (ca. 66 %), höhere Servicequalität (50 %) und eine Entlastung von Routinetätigkeiten (knapp 50 %). Geplant ist der Ausbau von digitalen Assistenten (>60 %) und Wissensmanagement (~45 %). Größtes Hemmnis ist der Datenschutz, gefolgt von Bedenken zur Ergebnisqualität, mangelnder Erklärbarkeit und regulatorischer Unsicherheit (ca. 40 %). Auch fehlende interdisziplinäre Teams bremsen die Umsetzung komplexer Use Cases. Kurzfristig werden steigende Kosten erwartet, langfristig ein kostendämpfender Effekt.

Der kritische Kim-Blick:

Die Umfrage liefert ein Stimmungsbild, ist aber nicht repräsentativ:

  1. Mini-Stichprobe: Mit nur 24 befragten Unternehmen (wenn auch großen) ist die Studie nicht repräsentativ für die deutsche Wirtschaft. Sie spiegelt primär die Sicht von Großkonzernen wider, die sich WTW-Beratung leisten können.
  2. Anbieter-Interesse: Als Outsourcing-Dienstleister hat WTW ein Interesse daran, den Trend zu KI und externer Unterstützung zu betonen. Die Aussagen der WTW-Experten stützen dieses Geschäftsmodell.
  3. Vage Kostenaussage: Die Prognose, dass KI langfristig "kostendämpfend" wirkt, aber unklar ist, ob sie die Gesamtkosten senkt, ist eine sehr vorsichtige Formulierung, die wenig konkrete Planungssicherheit bietet.
Kim prophezeit

Basierend auf dem demografischen Druck und den Hemmnissen wage ich diese Prognose:

  1. Die "bAV-Self-Service-Revolution" (2026/27): Getrieben vom Personalmangel werden Unternehmen massiv in KI-basierte Self-Service-Portale für Mitarbeiter investieren. Chatbots werden zum Standard für alle Standardfragen (Rentenhöhe, Vertragsstatus). Die persönliche Beratung wird zum Premium-Service.
  2. Compliance-Krise durch "Black-Box-bAV": Die mangelnde Erklärbarkeit von KI-Ergebnissen wird zu einem Problem werden, wenn erste fehlerhafte Rentenberechnungen durch KI auftauchen. Dies wird zu strengeren Regulierungen und einem Fokus auf "Explainable AI" (XAI) in der bAV führen.
  3. Konsolidierung der bAV-Administration: Die hohen Initialkosten für KI-Infrastruktur werden kleine und mittlere Unternehmen überfordern. Sie werden ihre bAV-Verwaltung zunehmend an große Outsourcing-Dienstleister (wie WTW) auslagern, die die Skaleneffekte der KI nutzen können.
Kim (JOBfellow) kommentiert

KI hält Einzug in die bAV-Verwaltung. Das bedeutet für dich:

  1. Wenn du im HR/bAV-Bereich arbeitest: Die Routine (einfache Anfragen beantworten) wird automatisiert. Spezialisiere dich auf komplexe Sachbearbeitung und Beratung, die Empathie und tiefes Fachwissen erfordern. Hier liegt deine Zukunft.
  2. Werde zum "Wissens-Manager": Unternehmen suchen händeringend nach Wegen zur Wissenssicherung. Wenn du weißt, wie man bAV-Know-how so strukturiert, dass eine KI es nutzen kann (Stichwort: Knowledge Engineering), bist du extrem wertvoll.
  3. Baue Brücken-Kompetenz auf: Für anspruchsvolle KI-Projekte fehlen "interdisziplinäre Teams". Wenn du bAV-Fachwissen mit grundlegendem IT-/KI-Verständnis kombinierst, bist du die perfekte Schnittstelle und kannst diese Lücke füllen.
Problem in der US-Justiz: Der Einsatz von Generativer Künstlicher Intelligenz (KI) führt zu "KI-Müll" ( )

Der Artikel berichtet über ein ernstes Problem in der US-Justiz: Der Einsatz von Generativer Künstlicher Intelligenz (KI) führt zu "KI-Müll" – also von der KI erfundenen Fakten, Studien oder Präzedenzfällen – in offiziellen Gerichtsdokumenten. Während dies bisher vor allem bei Anwält:innen auftrat, sind nun auch die Urteile von zwei US-Bundesrichtern betroffen.

Der Vorfall

Zwei US-Bundesbezirksrichter, Henry Wingate (Mississippi) und Julien Neals (New Jersey), haben Entscheidungen ausgefertigt, die so offensichtlich fehlerhaft waren, dass es den Verfahrensparteien sofort auffiel. Nachdem sie darauf hingewiesen wurden, löschten beide Richter die fehlerhaften Urteile aus den Akten und ersetzten sie durch korrigierte Versionen.

Die Reaktion: Keine Verantwortung, Schuldzuweisungen

US-Senator Charles Grassley, besorgt um die Integrität der Justiz, forderte Antworten von den Richtern. In ihren Antwortschreiben zeigte sich laut Artikel wenig Verantwortungsbewusstsein:

  • Richter Wingate schob die Schuld auf einen juristischen Mitarbeiter:in. Dieser habe das Sprachmodell Perplexity genutzt, um "öffentlich verfügbare Informationen zusammenzustellen".
  • Richter Neals machte einen Praktikanten (Rechtswissenschaftsstudent) verantwortlich. Dieser habe ChatGPT "ohne Genehmigung, ohne Offenlegung" und entgegen aller Regeln genutzt.

Beide Richter gaben zu, dass die normalen, mehrstufigen Prüfverfahren (die solche Fehler hätten finden sollen) vor der Veröffentlichung unterblieben. Den Grund dafür nannten sie jedoch nicht.

Das Kernproblem: Fehlende und schwammige Regeln

Der Vorfall offenbart ein strukturelles Problem:

  1. Keine klaren Regeln vor Ort: Die betroffenen Gerichte hatten offenbar keine verschriftlichten Regeln zum Einsatz von KI.
  2. "Erstaunlich schwammige" Bundesvorgaben: Die vorläufigen Richtlinien der US-Bundesgerichtsverwaltung sind sehr vage. Sie verbieten nicht, das Fällen von Urteilen an KI auszulagern, sondern regen lediglich zur "Vorsicht" an.
  3. Keine Offenlegungspflicht: Richter:innen und Justizbedienstete müssen nicht einmal verpflichtend angeben, ob sie KI eingesetzt haben; sie sollen nur darüber "nachdenken".

Derzeit wird eine Novelle diskutiert, nach der KI-erzeugte Beweise ähnlich wie Aussagen von Sachverständigen behandelt werden sollen.

Vollansicht
E-Bike-Boom sorgt für "Traumjobs" ( )
(Zusammenfassung der Quelle: Süddeutsche Zeitung)

Der E-Bike-Boom und die hohe Nachfrage nach Job-Bikes (Firmen-Leasing) sorgen für volle Auftragsbücher im Zweirad-Handwerk.

  • Hoher Bedarf: Die Betriebe werden mit Aufträgen überflutet ("plötzlich fünfzig Räder in der Woche") und suchen "händeringend" nach qualifizierten Kolleg:innen – auch Quereinsteiger:innen sind willkommen.
  • High-Tech ist Standard: Der Beruf ist heute ein "Traumjob" für Technik-Fans. E-Bikes machen den "Löwenanteil" der Arbeit aus.
  • Lebenslanges Lernen: Du lernst nie aus. Ständige Weiterbildung (z.B. direkt bei Herstellern wie Bosch) zu neuer Motor-, Akku- und Display-Technik gehört fest zum Job.
  • Sinnvolle Arbeit: Du sorgst für Sicherheit im Verkehr. Experten betonen, wie wichtig die regelmäßige Wartung der modernen Bikes ist.
Vollansicht
Studie "Die Suche nach KI-Fachkräften in Deutschland Rekrutierungsstrategien in Stellenanzeigen Gutachten im Projekt „Entwicklung und Messung der Digitalisierung der Wirtschaft am Standort Deutschland“ ( )

Kerninhalte der Studie:

Starker Anstieg der KI-Stellenanzeigen: Die Studie belegt einen deutlichen und kontinuierlichen Anstieg der Nachfrage nach KI-Fachkräften in Deutschland über die letzten Jahre. Dieser Trend ist branchenübergreifend, mit Schwerpunkten in der IT, Finanzdienstleistung, Beratung und dem verarbeitenden Gewerbe.

Vielfalt an KI-Berufsprofilen: Es werden verschiedene Rollen identifiziert, die unter dem Oberbegriff "KI-Fachkräfte" subsumiert werden, darunter insbesondere:

  • Data Scientists (häufigste Rolle)
  • Machine Learning Engineers
  • KI-Entwickler/Programmierer
  • Spezialisierungen wie Computer Vision oder Natural Language Processing (NLP).
  • Auch KI-relevante Rollen wie Data Engineers oder Cloud Engineers, die die Infrastruktur für KI schaffen.

Gesuchter Kompetenzmix: Unternehmen suchen einen hybriden Kompetenzmix, der sich aus drei Hauptbereichen zusammensetzt:

  • Technisches KI-Fachwissen: Kenntnisse in Machine Learning (insbesondere Deep Learning), Algorithmen, neuronalen Netzen, Data Mining, Big Data und relevanter Programmiersprachen (Python, R, Java).
  • Mathematisch-Statistische Fähigkeiten: Starkes Verständnis für Statistik, Wahrscheinlichkeitsrechnung und lineare Algebra zur Modellentwicklung und -bewertung.
  • Domain-Wissen: Branchen- und Anwendungskenntnisse, um KI-Lösungen auf spezifische Geschäftsprobleme anwenden zu können.

Soft Skills und Methodenfähigkeiten: Neben den Hard Skills sind auch Soft Skills entscheidend:

  • Problemlösungskompetenz und analytisches Denken.
  • Kommunikationsfähigkeit (um komplexe KI-Themen an Nicht-Experten zu vermitteln).
  • Teamfähigkeit und Projekterfahrung.
  • Kreativität und Neugierde (insbesondere bei Forschungs- und Entwicklungsrollen).

Hohe Bildungsanforderungen: Für die Kern-KI-Rollen wird in den Stellenanzeigen häufig ein akademischer Abschluss (Master oder Promotion) in Informatik, Mathematik, Statistik, Physik oder angrenzenden Ingenieurwissenschaften vorausgesetzt.

Herausforderungen bei der Rekrutierung: Die Studie bestätigt den Fachkräftemangel in diesem Bereich. Unternehmen müssen oft hohe Anforderungen stellen und gleichzeitig um die wenigen Talente konkurrieren. Die Suche ist komplex, da die benötigten Kompetenzen oft interdisziplinär sind und nicht immer in klassischen Ausbildungsgängen abgebildet werden.

Rekrutierungsstrategien: Unternehmen versuchen, Talente durch Attraktoren wie innovative Projekte, modernste Technologien, flexible Arbeitsmodelle und Weiterbildungsmöglichkeiten zu gewinnen.

Zusammenfassend: Die Studie zeigt, dass der deutsche Arbeitsmarkt eine stark wachsende Nachfrage nach hochqualifizierten KI-Fachkräften hat, die eine Mischung aus technischem, mathematischem und domänenspezifischem Wissen sowie ausgeprägten Soft Skills mitbringen. Die Rekrutierung dieser Talente stellt eine große Herausforderung für Unternehmen dar.

Vollansicht