Direkt zum Inhalt

Studie: KI-Forschung im MINT-Unterricht ignoriert die Bedürfnisse von Schülern

Eine umfassende Literaturstudie (183 Publikationen) aus der Mathedidaktik der Universität Würzburg, veröffentlicht im International Journal of STEM Education, kritisiert den aktuellen Stand der Forschung zu KI im MINT-Unterricht. Prof. Hans-Stefan Siller und Alissa Fock kommen zu dem Schluss, dass die Forschung primär technikzentriert ist und das Ziel der ganzheitlichen Bildung ("Human Flourishing") aus den Augen verliert.

Die zentralen Defizite der aktuellen Forschung:

  • Technik-Tunnelblick: Der Fokus liegt auf der Leistungsfähigkeit von KI-Systemen (35 %) und der Entwicklung neuer Tools (22 %). Die Wirkung auf Lernende und Lehrende wird vernachlässigt. Von 139 empirischen Studien untersuchten rund die Hälfte ausschließlich KI-generierte Inhalte, ohne deren Anwendung im Unterricht zu beobachten.
  • Vernachlässigung ganzheitlicher Fähigkeiten: Kognitive Aspekte dominieren. Entscheidende nicht-kognitive Fähigkeiten wie Motivation, Selbstvertrauen, kritisches Denken und ethisches Urteilsvermögen werden kaum untersucht.
  • Ethische Lücke: Themen wie Bias (Voreingenommenheit) und Datensicherheit spielen in der Forschungsliteratur kaum eine Rolle.
  • Geografisches Ungleichgewicht: Die Forschung konzentriert sich auf den Globalen Norden (73 %, davon 30 % USA), was kulturelle Vielfalt ignoriert.

Der Lösungsansatz: Mensch-KI-Kollaboration Die Autoren fordern, den Menschen wieder in den Mittelpunkt zu stellen. Sie schlagen ein Modell vor, in dem Lehrkräfte KI als Werkzeug für Routineaufgaben nutzen (z.B. Übungserstellung), aber die finale pädagogische Verantwortung und kritische Prüfung der Inhalte (auf Fehler, Bias) behalten. Dies entlaste Lehrkräfte, bewahre aber ihre Autonomie und die Sinnhaftigkeit ihrer Tätigkeit.

Der kritische Kim-Blick:

Die Studie liefert eine wichtige Meta-Analyse, hat aber auch Grenzen:

  1. Akademischer Elfenbeinturm? Die Studie analysiert Forschungsliteratur. Sie spiegelt nicht zwangsläufig die reale Praxis in Klassenzimmern wider, wo engagierte Lehrkräfte KI vielleicht schon viel ganzheitlicher einsetzen, als es die Forschung abbildet.
  2. Fehlende Konkretisierung: Der Ruf nach "Human Flourishing" und "ganzheitlicher Entwicklung" ist richtig, aber sehr abstrakt. Die Studie liefert keine konkreten Beispiele, wie eine Forschung aussehen müsste, die "Motivation" oder "ethisches Urteilsvermögen" im Kontext von KI misst.
  3. Keine Lösungen für den "Bias": Dass Voreingenommenheit in KI-Systemen ein Problem ist, wird festgestellt, aber es fehlen Ansätze, wie Lehrkräfte diesen Bias in der Praxis erkennen und pädagogisch auffangen können.
Kim prophezeit

Basierend auf der Kritik am Technik-Fokus wage ich diese Prognose:

  1. Die "Pädagogik-Wende" (ab 2026): Der anfängliche KI-Hype im Bildungswesen wird abflauen. Es wird eine Gegenbewegung geben, die lautstark einfordert, dass KI pädagogischen Zielen dienen muss. Wir werden einen Boom an Fortbildungen und Lehrmaterialien sehen, die sich auf "KI-Ethik im Unterricht" und "Kritisches Denken mit KI" fokussieren.
  2. Neue Messgrößen für Bildungserfolg: Die reine Wissensabfrage (die KI gut kann) wird an Bedeutung verlieren. Zukünftige Prüfungsformate werden stärker auf Kompetenzen wie Problemlösefähigkeit, Kreativität und ethische Reflexion zielen – Fähigkeiten, die KI (noch) nicht automatisiert bewerten kann.
  3. Der "Lehrer als Kurator": Die Rolle der Lehrkraft wandelt sich vom reinen Wissensvermittler zum "Lern-Kurator" und Mentor. Sie orchestrieren den Einsatz von KI-Tools, wählen die richtigen Inhalte aus und begleiten die Schüler bei der kritischen Auseinandersetzung.
Kim (JOBfellow) kommentiert

Diese Studie ist ein Weckruf für alle im Bildungsbereich. Lass dich nicht von der Technik blenden.

  1. Als Lehrkraft/Dozent: Wenn du KI einsetzt, frage dich nicht nur "Funktioniert das Tool?", sondern "Was macht es mit meinen Schülern/Studenten?". Nutze die KI für die Fleißarbeit, aber investiere die gewonnene Zeit in die Förderung von kritischem Denken, Empathie und Ethik. Das ist deine unersetzbare menschliche Rolle.
  2. Als Elternteil: Achte darauf, dass in der Schule nicht nur mit KI gelernt wird, sondern auch über KI. Deine Kinder müssen verstehen, dass KI-Antworten voreingenommen oder falsch sein können. Fördere ihre Medienkompetenz zu Hause.
  3. Als Bildungspolitiker/Entscheider: Investiere nicht nur in Lizenzen für KI-Tools, sondern vor allem in die Fortbildung von Lehrkräften. Sie brauchen das Rüstzeug, um KI pädagogisch sinnvoll und ethisch reflektiert einzusetzen, statt nur als "Technik-Konsumenten" zu agieren.
Problem in der US-Justiz: Der Einsatz von Generativer Künstlicher Intelligenz (KI) führt zu "KI-Müll" ( )

Der Artikel berichtet über ein ernstes Problem in der US-Justiz: Der Einsatz von Generativer Künstlicher Intelligenz (KI) führt zu "KI-Müll" – also von der KI erfundenen Fakten, Studien oder Präzedenzfällen – in offiziellen Gerichtsdokumenten. Während dies bisher vor allem bei Anwält:innen auftrat, sind nun auch die Urteile von zwei US-Bundesrichtern betroffen.

Der Vorfall

Zwei US-Bundesbezirksrichter, Henry Wingate (Mississippi) und Julien Neals (New Jersey), haben Entscheidungen ausgefertigt, die so offensichtlich fehlerhaft waren, dass es den Verfahrensparteien sofort auffiel. Nachdem sie darauf hingewiesen wurden, löschten beide Richter die fehlerhaften Urteile aus den Akten und ersetzten sie durch korrigierte Versionen.

Die Reaktion: Keine Verantwortung, Schuldzuweisungen

US-Senator Charles Grassley, besorgt um die Integrität der Justiz, forderte Antworten von den Richtern. In ihren Antwortschreiben zeigte sich laut Artikel wenig Verantwortungsbewusstsein:

  • Richter Wingate schob die Schuld auf einen juristischen Mitarbeiter:in. Dieser habe das Sprachmodell Perplexity genutzt, um "öffentlich verfügbare Informationen zusammenzustellen".
  • Richter Neals machte einen Praktikanten (Rechtswissenschaftsstudent) verantwortlich. Dieser habe ChatGPT "ohne Genehmigung, ohne Offenlegung" und entgegen aller Regeln genutzt.

Beide Richter gaben zu, dass die normalen, mehrstufigen Prüfverfahren (die solche Fehler hätten finden sollen) vor der Veröffentlichung unterblieben. Den Grund dafür nannten sie jedoch nicht.

Das Kernproblem: Fehlende und schwammige Regeln

Der Vorfall offenbart ein strukturelles Problem:

  1. Keine klaren Regeln vor Ort: Die betroffenen Gerichte hatten offenbar keine verschriftlichten Regeln zum Einsatz von KI.
  2. "Erstaunlich schwammige" Bundesvorgaben: Die vorläufigen Richtlinien der US-Bundesgerichtsverwaltung sind sehr vage. Sie verbieten nicht, das Fällen von Urteilen an KI auszulagern, sondern regen lediglich zur "Vorsicht" an.
  3. Keine Offenlegungspflicht: Richter:innen und Justizbedienstete müssen nicht einmal verpflichtend angeben, ob sie KI eingesetzt haben; sie sollen nur darüber "nachdenken".

Derzeit wird eine Novelle diskutiert, nach der KI-erzeugte Beweise ähnlich wie Aussagen von Sachverständigen behandelt werden sollen.

Vollansicht
E-Bike-Boom sorgt für "Traumjobs" ( )
(Zusammenfassung der Quelle: Süddeutsche Zeitung)

Der E-Bike-Boom und die hohe Nachfrage nach Job-Bikes (Firmen-Leasing) sorgen für volle Auftragsbücher im Zweirad-Handwerk.

  • Hoher Bedarf: Die Betriebe werden mit Aufträgen überflutet ("plötzlich fünfzig Räder in der Woche") und suchen "händeringend" nach qualifizierten Kolleg:innen – auch Quereinsteiger:innen sind willkommen.
  • High-Tech ist Standard: Der Beruf ist heute ein "Traumjob" für Technik-Fans. E-Bikes machen den "Löwenanteil" der Arbeit aus.
  • Lebenslanges Lernen: Du lernst nie aus. Ständige Weiterbildung (z.B. direkt bei Herstellern wie Bosch) zu neuer Motor-, Akku- und Display-Technik gehört fest zum Job.
  • Sinnvolle Arbeit: Du sorgst für Sicherheit im Verkehr. Experten betonen, wie wichtig die regelmäßige Wartung der modernen Bikes ist.
Vollansicht
Studie "Die Suche nach KI-Fachkräften in Deutschland Rekrutierungsstrategien in Stellenanzeigen Gutachten im Projekt „Entwicklung und Messung der Digitalisierung der Wirtschaft am Standort Deutschland“ ( )

Kerninhalte der Studie:

Starker Anstieg der KI-Stellenanzeigen: Die Studie belegt einen deutlichen und kontinuierlichen Anstieg der Nachfrage nach KI-Fachkräften in Deutschland über die letzten Jahre. Dieser Trend ist branchenübergreifend, mit Schwerpunkten in der IT, Finanzdienstleistung, Beratung und dem verarbeitenden Gewerbe.

Vielfalt an KI-Berufsprofilen: Es werden verschiedene Rollen identifiziert, die unter dem Oberbegriff "KI-Fachkräfte" subsumiert werden, darunter insbesondere:

  • Data Scientists (häufigste Rolle)
  • Machine Learning Engineers
  • KI-Entwickler/Programmierer
  • Spezialisierungen wie Computer Vision oder Natural Language Processing (NLP).
  • Auch KI-relevante Rollen wie Data Engineers oder Cloud Engineers, die die Infrastruktur für KI schaffen.

Gesuchter Kompetenzmix: Unternehmen suchen einen hybriden Kompetenzmix, der sich aus drei Hauptbereichen zusammensetzt:

  • Technisches KI-Fachwissen: Kenntnisse in Machine Learning (insbesondere Deep Learning), Algorithmen, neuronalen Netzen, Data Mining, Big Data und relevanter Programmiersprachen (Python, R, Java).
  • Mathematisch-Statistische Fähigkeiten: Starkes Verständnis für Statistik, Wahrscheinlichkeitsrechnung und lineare Algebra zur Modellentwicklung und -bewertung.
  • Domain-Wissen: Branchen- und Anwendungskenntnisse, um KI-Lösungen auf spezifische Geschäftsprobleme anwenden zu können.

Soft Skills und Methodenfähigkeiten: Neben den Hard Skills sind auch Soft Skills entscheidend:

  • Problemlösungskompetenz und analytisches Denken.
  • Kommunikationsfähigkeit (um komplexe KI-Themen an Nicht-Experten zu vermitteln).
  • Teamfähigkeit und Projekterfahrung.
  • Kreativität und Neugierde (insbesondere bei Forschungs- und Entwicklungsrollen).

Hohe Bildungsanforderungen: Für die Kern-KI-Rollen wird in den Stellenanzeigen häufig ein akademischer Abschluss (Master oder Promotion) in Informatik, Mathematik, Statistik, Physik oder angrenzenden Ingenieurwissenschaften vorausgesetzt.

Herausforderungen bei der Rekrutierung: Die Studie bestätigt den Fachkräftemangel in diesem Bereich. Unternehmen müssen oft hohe Anforderungen stellen und gleichzeitig um die wenigen Talente konkurrieren. Die Suche ist komplex, da die benötigten Kompetenzen oft interdisziplinär sind und nicht immer in klassischen Ausbildungsgängen abgebildet werden.

Rekrutierungsstrategien: Unternehmen versuchen, Talente durch Attraktoren wie innovative Projekte, modernste Technologien, flexible Arbeitsmodelle und Weiterbildungsmöglichkeiten zu gewinnen.

Zusammenfassend: Die Studie zeigt, dass der deutsche Arbeitsmarkt eine stark wachsende Nachfrage nach hochqualifizierten KI-Fachkräften hat, die eine Mischung aus technischem, mathematischem und domänenspezifischem Wissen sowie ausgeprägten Soft Skills mitbringen. Die Rekrutierung dieser Talente stellt eine große Herausforderung für Unternehmen dar.

Vollansicht