Productivity Report: Ist Generative KI die neue Elektrizität? Ja, aber die Produktivität kommt später (J-Kurve)
Der dritte Produktivitätsbericht des "The Productivity Institute" untersucht die Kernfrage, ob Generative KI (GenAI) eine "General Purpose Technology" (GPT) ist – eine Basistechnologie wie Dampfmaschine, Elektrizität oder IKT, die das Potenzial hat, die gesamtwirtschaftliche Produktivität grundlegend zu steigern.
Die Autoren kommen zu dem Schluss: GenAI zeigt klare Merkmale einer GPT (breite Anwendbarkeit, stetige Verbesserung, Innovations-Katalysator), aber die messbaren Produktivitätseffekte lassen noch auf sich warten.
Die zentralen Erkenntnisse:
- Die Produktivitäts-J-Kurve: Der Bericht nutzt das Modell der "J-Kurve". Die Einführung einer neuen GPT führt zunächst oft zu einer Verlangsamung oder einem Rückgang der Produktivität. Grund sind die hohen Anfangsinvestitionen in Technologie, das Erlernen neuer Fähigkeiten und die notwendige organisatorische Umstrukturierung ("intangibles Kapital"). Erst nach dieser "Investitionsphase" folgt der steile Produktivitätsanstieg. Wir befinden uns aktuell wahrscheinlich am Anfang dieser Kurve.
- Hürden der Diffusion: Die Verbreitung (Diffusion) von GenAI wird durch mehrere Faktoren gebremst: die schiere Menge an neuem Wissen, die Kosten der Adoption und vor allem der Mangel an "komplementären Fähigkeiten" – nicht nur technischer, sondern auch managerialer Natur, um die notwendigen organisatorischen Änderungen umzusetzen.
- Vergleich mit IKT: Ähnlich wie beim "Solow-Paradoxon" der Computer-Ära (Computer sind überall, nur nicht in der Produktivitätsstatistik) dauert es, bis die Technologie effektiv genutzt wird. GenAI könnte sich zwar schneller verbreiten als frühere GPTs (da Cloud-basiert), aber die organisatorische Anpassung bleibt der Engpass.
Der Bericht liefert eine fundierte makroökonomische Analyse, bleibt aber akademisch:
- Theorie-Lastigkeit: Der Bericht argumentiert stark mit ökonomischen Modellen (J-Kurve, Growth Accounting). Für Praktiker, die konkrete Implementierungslösungen suchen, bleibt er oft zu abstrakt.
- Das "Managerial Gap": Es wird betont, dass Management-Fähigkeiten zur Umsetzung fehlen, aber der Bericht bietet kaum Lösungsansätze, wie diese Lücke in Unternehmen schnell geschlossen werden kann.
- Wiederholung des Bekannten: Die Parallele zum IKT-Boom und dem anfänglichen Ausbleiben von Produktivität ist ökonomisch korrekt, aber keine überraschend neue Erkenntnis.
Basierend auf der J-Kurven-Theorie des Berichts wage ich diese Prognose:
- Das Tal der Tränen (2026/27): Wir werden in den nächsten 1-2 Jahren eine Phase der Ernüchterung erleben. Die hohen Kosten für Integration und Reorganisation werden die Produktivitätsgewinne vielerorts noch auffressen. Die Makro-Daten werden den Hype (noch) nicht widerspiegeln.
- Die große Schere öffnet sich: Es wird eine massive Kluft entstehen zwischen Unternehmen, die die "J-Kurve" durchschreiten (erfolgreicher organisatorischer Umbau), und denen, die nur Technologie kaufen, ohne Prozesse zu ändern. Letztere werden abgehängt.
- Renaissance der Organisationsentwickler: Die Nachfrage nach Experten, die Unternehmen organisatorisch auf das KI-Zeitalter vorbereiten (Prozesse, Kultur, Skills), wird die Nachfrage nach reinen KI-Technikern in vielen Branchen übersteigen.
Dieser Bericht ist eine Mahnung zur Geduld und strategischen Weitsicht.
- Bereite dich auf die "J-Kurve" vor: Erwarte keine sofortigen Wunder. Investiere jetzt Zeit und Ressourcen in Lernen und Umbau, auch wenn die Produktivität kurzfristig leidet. Das ist der notwendige "Dip" vor dem Anstieg.
- Fokussiere auf "komplementäre Skills": Technisches Verständnis von GenAI ist wichtig, aber nicht genug. Die wahren Engpässe sind Change Management, Prozess-Redesign und organisatorische Anpassungsfähigkeit. Investiere massiv in diese Bereiche.
- Unterscheide nach Sektoren: Die Auswirkungen werden nicht überall gleich schnell sein. Wissensintensive Dienstleistungen sind früher dran als das verarbeitende Gewerbe. Passe deine Strategie deinem Sektor an.



