Fraunhofer-Studie: Bundesverwaltung soll bei Generativer KI auf Eigenentwicklungen setzen
Eine vom Bundesinnenministerium geförderte Studie des Fraunhofer-Instituts Fokus (Kompetenzzentrum Öffentliche IT) hat die Nutzung von großen Sprachmodellen (LLMs) in der Bundesverwaltung untersucht. Die zentrale Frage: Wie lässt sich generative KI nutzen, ohne die digitale Souveränität zu gefährden? Die Studie analysierte die Projekte anhand der Kriterien Wechselmöglichkeit, Gestaltungsfähigkeit und Einfluss auf Anbieter.
Die wichtigsten Ergebnisse:
- Keine kritische Abhängigkeit: Anders als bei Bürosoftware gibt es bei LLMs keine singuläre Abhängigkeit von einem US-Konzern. Die Verwaltung hat viele Eigenentwicklungen für typische Anwendungsfälle aufgebaut, die auf eigener Hardware laufen.
- Wechselmöglichkeit ist gegeben: Die LLMs (meist nicht-europäisches Open Source) können bei Bedarf mit geringem bis mittlerem Aufwand ausgetauscht werden, da sie intern gehostet werden.
- Strategische Lücke bei europäischen Modellen: Zwar stärkt der Betrieb auf eigener Infrastruktur die Souveränität, doch es fehlt ein eigenständiges, europäisches LLM, das auf europäischen Werten basiert. Die Autoren empfehlen dringend zu prüfen, ob eine solche Entwicklung angestrebt werden sollte.
- Hürden in der Praxis: Komplizierte rechtliche KI-Vorschriften und fehlende juristische Kompetenz bremsen Projekte und verhindern oft die Veröffentlichung als Open Source. Projektverantwortliche wünschen sich zudem eine spezialisierte KI-Cloud-Infrastruktur mit geschultem Personal.
Handlungsempfehlungen: Ausbau gemeinsamer LLM-Infrastrukturen über Ressortgrenzen hinweg, Stärkung von Open Source, Einführung eines verpflichtenden "Souveränitätschecks" für kritische Projekte und Bündelung der Beschaffung.
Die Studie zeichnet ein erstaunlich positives Bild, hat aber Schwächen:
- Die "Schönwetter"-Analyse: Dass die Risiken als "überschaubar" gelten, weil die Lösungen "derzeit ausschließlich der Arbeitsunterstützung dienen", ist kurzsichtig. Sobald KI kritische Prozesse (z.B. Bescheiderstellung) übernimmt, ändert sich das Risiko-Profil dramatisch.
- Open Source als Feigenblatt: Die Nutzung nicht-europäischer Open-Source-Modelle (wie Metas Llama) stärkt zwar die Wechselmöglichkeit, macht aber letztlich doch abhängig von der Innovationskraft und Lizenzpolitik von US-Konzernen, auch wenn der Betrieb in-house erfolgt.
- Umsetzungs-Realität vs. Wunsch: Die Forderung nach "gemeinsamen Infrastrukturen über Ressortgrenzen hinweg" klingt gut, scheitert aber in der föderalen Praxis oft am Kompetenzgerangel und bürokratischen Hürden.
Basierend auf der strategischen Lücke und den Hürden wage ich diese Prognose:
- Die "Bundes-KI-Cloud" (2026/27): Getrieben vom Ruf nach gemeinsamer Infrastruktur wird der Bund eine zentrale, hochsichere KI-Cloud für alle Behörden aufbauen, betrieben von einem Staatsunternehmen oder einem europäischen Konsortium.
- Das europäische "Airbus für KI": Die Erkenntnis, dass man von US-Modellen abhängig bleibt, wird politisch unhaltbar. Deutschland und Frankreich werden bis 2027 eine Milliarden-Initiative starten, um ein konkurrenzfähiges, europäisches "Foundation Model" zu entwickeln.
- Der "Compliance-Stau" bremst die Innovation: Die Angst vor rechtlichen Fehlern und der fehlende Mut zu Open Source werden dazu führen, dass die Verwaltung technologisch weiter hinterherhinkt. Viele innovative Projekte werden in der juristischen Prüfung sterben.
Wenn du im Public Sector oder im Umfeld der Verwaltung arbeitest, zeigt diese Studie deinen Karriereweg:
- Werde zum "Souveränitäts-Architekten": Die Verwaltung braucht Experten, die nicht nur KI verstehen, sondern auch wissen, wie man sie unabhängig betreibt (On-Premise, Open Source, Datenschutz). Das ist der Skill der Stunde.
- Spezialisiere dich auf "KI-Compliance": Die Studie nennt komplizierte Rechtsvorschriften als massive Bremse. Wenn du die Brücke schlagen kannst zwischen Technik und Recht (KI-VO, DSGVO), bist du unbezahlbar.
- Fokussiere auf "Infrastruktur & Betrieb": Der Ruf nach einer KI-spezifischen Cloud-Infrastruktur und geschultem Personal ist laut. Werde der Experte, der diese Systeme aufbaut und am Laufen hält (MLOps für den Staat).


